Контакты

Эффективное использование энергии. Производство и использование электроэнергии Использование электроэнергии в транспорте презентация


История электричества Впервые электрический заряд обнаружил Фалес Милетский еще 600 лет до н. э. Он заметил, что янтарь, потёртый о кусочек шерсти, приобретает удивительные свойства притягивать легкие не электризованные предмета(пушинки и куски бумаги). Термин «электричество» впервые ввел английский ученый Тюдор Гилберт, в своей книге «О магнитных свойствах, магнитных телах и о большом магните Земле». В своей книге он доказал, что свойством наэлектризовываться обладает не только янтарь, но и другие вещества. А в середине 17 века всем известный ученый Отто фон Герике создал электростатическую машину, в которой обнаружил свойство заряженных предметов отталкиваться друг от друга. Так начали проявляться основные понятия в разделе электричество. Об истории электричества. Уже в 1729 г. Французский физик Шарль Дюфе установил существование двух типов зарядов. Он назвал такие заряды «стеклянным» и «смоляным», но вскоре, немецкий ученый Георг Лихтенберг, ввел в обиход понятие отрицательно и положительно заряженных зарядов. А в 1745 году был изготовлен первый в истории электрический конденсатор так называемая Лейденская банка. Но возможность сформулировать основные понятия и открытия в науке об электричестве удалось лишь только тогда, когда появились количественные исследования. Тогда началось время открытия основных законов электричества. Закон взаимодействия электронных зарядов был открыт в 1785 г. Французским ученым Шарлем Кулоном с помощью созданной им системы крутильных весов.








Томас Эдисон осматривает электромобиль Detroit Electric. Электромобиль массово производился с 1907 по 1927 годы, было произведено более экземпляров. Максимальная скорость составляла 32 км/ч, дальность пробега на одном заряде аккумуляторной батареи 130 км.






Компания Lightning представила на лондонской выставке British Motor Show спортивный электромобиль Lightning GT, от которого невозможно отвести взгляд. Спортивный Lightning GT обладает мощностью свыше 700 л.с. и разгоняется до 100 км/ч за 4 секунды. Максимальная скорость - около 210 км/ч. Автомобиль получил рейтинг экологичности благодаря отсутствию выбросов в атмосферу


Автомобиль приводится в движение двигателями, установленными в колесах, благодаря чему удается лучше передать крутящий момент и упразднить трансмиссию, сцепление и тормозную систему. Во время торможения двигатели работают как генераторы, заряжая аккумуляторы, при этом создается сопротивление, за счет которого и происходит торможение.


Весом в 300 кг (вместе с водителем), Xof1 оснащен 96 вольтовым электродвигателем и работает от литиево-ионного аккумулятора 3.8 к Вт. Он способен разогнаться от 0-60 миль в час за 6 секунд, максимальная скорость – 75 миль в час, полного заряда аккумулятора хватает, чтобы проехать 125 миль.

ПРОИЗВОДСТВО, ИСПОЛЬЗОВАНИЕ И ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ.

Производство электроэнергии.Тип электростанций

КПД электростанций

% от всей вырабатываемой энергии

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Использование электроэнергии.Удвоение потребления электроэнергии происходит за 10 лет

Сферы
хозяйства

Количество используемой электроэнергии,%

Промышленность
Транспорт
Сельское хозяйство
Быт

70
15
10
4

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила».Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила».
Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность. Крупным потребителем является также транспорт. Всё большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд.

Презентация на тему: Производство и использование электроэнергии










1 из 9

Презентация на тему: Производство и использование электроэнергии

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Электроэнергия - физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Электрическая энергия является также товаром, который приобретают участники оптового рынка у генерирующих компаний и потребители электрической энергии на розничном рынке у энергосбытовых компаний.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС -- основной вид электрической станций. На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

№ слайда 5

Описание слайда:

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

№ слайда 6

Описание слайда:

Атомная электростанция электростанция, в которой атомная энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях,преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем.

№ слайда 7

Описание слайда:

Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности.

№ слайда 8

Описание слайда:

При этом встает проблема эффективного использования этой энергии. При передаче электроэнергии на большие расстояния, от производителя до потребителя, потери на тепло вдоль линии передачи растут пропорционально квадрату тока, т.е. если ток удваивается, то тепловые потери увеличиваются в 4 раза. Поэтому, желательно, чтобы ток в линиях был мал. Для этого повышают напряжение на линии передач. Электроэнергия передается по линиям, где напряжение достигает сотен тысяч вольт. Возле городов, получающих энергию от линий передач, это напряжение с помощью понижающего трансформатора доводят до нескольких тысяч вольт. В самом же городе на подстанциях напряжение понижается до 220 вольт.

№ слайда 9

Описание слайда:

Наша страна занимает большую территорию, почти 12 часовых поясов. А это значит, что если в одних регионах потребление электроэнергии максимально, то в других уже окончен рабочий день и потребление снижается. Для рационального использования электроэнергии вырабатываемой электростанциями, они объединены в электроэнергетические системы отдельных районов: европейской части, Сибири, Урала, Дальнего Востока и др. Такое объединение позволяет эффективней использовать электроэнергию согласовывая работу отдельных электростанций. Сейчас различные энергосистемы объединены в единую энергетическую систему России.

Использование электроэнергии на транспорте Выполнили работу: ученицы 11 «а» кл КСОШ №1 Кряжева Кристина Перфилова Даша ТуликЮля
Затолокина Маша
Руководитель: Аршакян Р.Ш.

Цели и задачи:

Показать необходимость использования
новых видов двигателей –
Электромобилей

Актуальность темы:

Экологические
проблемы связанные с
транспортом:
-Загрязнение
воздушного бассейна.
-Загрязнение водоёмов.
-Загрязнение почв.
-Шумовое загрязнение.

К чему может привести
использование тепловых
двигателей:
-Парниковому эффекту.
-Повышению температуры на планете.
-Тепловому загрязнению водоёмов.
-Загрязнению воздуха.

Пути решения:

Развитие общественного транспорта.
Другие виды топлива.
Очистные фильтры.
Развитие передвижения на велосипеде
или пешком.
Создание «зелёных коридоров».
Электромобили.

Томас Эдисон осматривает электромобиль Detroit Electric. Электромобиль массово производился с 1907 по 1927 годы, было

произведено более 20000 экземпляров. Максимальная скорость
составляла 32км/ч, дальность пробега на одном заряде
аккумуляторной батареи 130км.

La Jamais Contente (фр. Всегда недовольный) 1899г - электромобиль с легкосплавным обтекаемым кузовом - первый автомобиль,

La Jamais Contente (фр. Всегда недовольный) 1899г электромобиль с легкосплавным обтекаемым кузовом первый автомобиль, разогнавшийся свыше 100км/ч

Электромобиль Reva Classe индийского производства - один из самых успешных современных серийных электромобилей.

Компания Lightning представила на лондонской выставке British Motor Show спортивный электромобиль Lightning GT, от которого

невозможно отвести
взгляд.
Спортивный Lightning GT обладает мощностью свыше 700 л.с. и разгоняется до
100 км/ч за 4 секунды. Максимальная скорость - около 210 км/ч. Автомобиль
получил рейтинг экологичности благодаря отсутствию выбросов в атмосферу

Автомобиль приводится в движение двигателями, установленными в колесах, благодаря чему удается лучше передать крутящий момент и

упразднить трансмиссию, сцепление и тормозную систему. Во время
торможения двигатели работают как генераторы, заряжая
аккумуляторы, при этом создается сопротивление, за счет которого и
происходит торможение.

Весом в 300 кг (вместе с водителем), Xof1 оснащен 96 вольтовым электродвигателем и работает от литиево-ионного аккумулятора 3.8

кВт. Он способен разогнаться от 0-60 миль в час за 6 секунд,
максимальная скорость – 75 миль в час, полного заряда
аккумулятора хватает, чтобы проехать 125 миль.

ВЫВОД:
Мы с уверенностью смотрим в будущее электротранспорта:
цены на нефть и газ растут, и переход на массовое
использование альтернативных видов транспорта не за
горами.
Индикатором может служить отношение европейских стран
к этой проблеме:
все больше производится различных моделей серийных
электромобилей,
вводится законодательная поддержка владельцев чистого
транспорта,
растет экологическое самосознание населения.
Энтузиасты электромобилей уже сейчас имеют широкие
возможности для реализации своей мечты - все
необходимое для конверсии автомобиля в электромобиль
можно достаточно легко купить за относительно небольшие
деньги

Использование электроэнергии Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу.






Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.). Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.


Передача электроэнергии Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.


Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой где R – сопротивление линии.




Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие кВ.


Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.





В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солн ечные батареи, малые газогенераторы





Понравилась статья? Поделитесь ей