Контакты

Почва используется для очистки и. Способ очистки почв от тяжелых металлов. Биотехнологический способ очистки грунта

Изобретение относится к области сельского хозяйства. Способ очистки почв от тяжелых металлов включает выращивания растений фитомелиорантов на загрязненных почвах с последующим их удалением. В качестве растения - фитомелиоранта используют сафлор. Семена сафлора высевают в загрязненную почву из расчета 20-22 кг/га, доводят взрослые растения до фазы окончания цветения и начала отмирания нижних листьев, после чего фитомелиорант полностью удаляют из почвы. Обеспечивается полное поглощение ионов тяжелых металлов. 3 табл.

Изобретение относится к сельскому хозяйству и может быть использовано при проведении специальных мероприятиях по снижению содержания в загрязненных почвенных ценозах токсичных концентраций тяжелых металлов с целью восстановления или улучшения агрохимических показателей, необходимых для получения экологически безопасной продукции.

В настоящее время отечественными и зарубежными исследователями ведется поиск растений - гипераккумулянтов, свойства которых позволяют эффективно извлекать тяжелые металлы из загрязненной почвы .

В литературных источниках сообщается, что рекультивация грунтов или очистка их от загрязнений с помощью растений является сравнительно новым методом (десять лет), экологическим и прогрессивным. Он позволяет исключить или ограничить перенос тяжелых металлов по цепочке от человека к грунтам и грунтовым водам без ущерба для окружающей среды .

В аналоговых работах авторами показано, что в целях фиторемедиации загрязненных почв (очистка при помощи растений) используют следующие растения - аккумулянты: ракитник, редька масличная, амарант и даже дикорастущие растения .

Наиболее близким аналогом к изобретению по совокупности основных существенных признаков является способ очистки почв от тяжелых металлов путем выращивания растений - фитомелирантов на загрязненных почвах с последующим их полным удалением из почвы (см. RU 2282508, Кл. A01B 79/02, 27.0.2006).

К недостаткам аналоговой работы следует отнести изучение только одного загрязнителя - цезия, не указан коэффициент биологического накопления загрязнителя по используемым культурам, нет четкого понятия о сроке уборки, поскольку использовались культуры разных групп технологических требований и биологии развития.

Задачей изобретения является улучшение экологического состояния естественных и культурных биогеоценозов за счет снижения содержания токсичных концентраций тяжелых металлов в корнеобитаемом слое почв.

Технический результат - более полное поглощение ионов тяжелых металлов (свинец, кадмий и медь) из почвенного раствора при создании оптимального покрытия растениями сафлора загрязненной площади.

По сущности поставленная задача достигается тем, что на загрязненных почвах возделывают сафлор, семена высевают из расчета 60-80 растений на м 2 (20-22 кг/га) с последующим доведением и полным удалением растений до фазы окончания цветения и начала отмирания нижних листьев.

Предлагаемая норма высева обеспечивает полный охват корневой системой растения по объему загрязненной почвы. При меньшей норме высева охват не полный, а при большей норме снижается резко продуктивность надземной массы и, как следствие, общий вынос тяжелых металлов растениями сафлора.

Пример конкретного выполнения

Опыты проводились на территории очистных сооружений г.Истры.

Проводили весенний посев растений вручную с последующей заделкой граблями.

Пробы почв отбирали до посева и сразу после уборки сафлора.

Уборку проводили, доведя развитие растений до фазы окончания цветения и начала отмирания нижних листьев.

Полученные результаты в ходе выполнения эксперимента в полевых условиях убедительно доказывают, что сафлор может быть отнесен к растениям - гипераккумулянтам тяжелых металлов.

Интересно отметить, что, как правило, при выращивании на загрязненных почвах, даже у гипераккумулянтов, содержание таких металлов, как свинец, кадмий и медь в растительных образцах по надземной части не превышает 1,2; 0,5-1 и 10-12 мг/кг сухой массы соответственно (табл.1).

На основании представленных результатов и данных по содержанию тяжелых металлов (подвижная форма) в почве произведен расчет коэффициента биологического накопления (поглощения) (табл.2).

Как известно, если у растений даже по надземной массе коэффициент биологического накопления токсикантов больше единицы, то данный вид может быть отнесен к гипераккумулянтам, в рассматриваемом примере высокий КБН TA достигнут и по корневой части опытных растений.

Анализ биопродуктивности растений в фазу цветения не выявил проявления токсичного влияния загрязненной почвы на рост и развитие сафлора - средняя сухая масса стеблей составила 557 г, корней - 143 г см 2 соответственно. Посев семян проводится вручную из расчета 60-80 растений на 1 кв. м.

При загущенном посеве, свыше 80 раст./м 2 , отмечали снижение продуктивности надземной массы в среднем на 16%, растения отставали в росте, корневая система сафлора имела меньшую массу, видимо при уплотнении посевов у растений сафлора проявляется аллелопатия - взаимное угнетение роста и развития.

Результаты испытании сафлора при использовании в качестве фитомелиоранта убедительно доказывают высокую эффективность аккумулирующей способности растений для снижения содержания тяжелых металлов в корнеобитаемом слое почвы.

Способ очистки включает следующие мероприятия:

Подготовка почвы к посеву;

Посев фитомелиоранта из расчета 60-80 раст./м 2 (20-22 кг/га), глубина заделки семян 4-5 см;

Доводят развитие растений сафлора до фазы окончания цветения и начала отмирания нижних листьев, затем полностью удаляют их из загрязненной почвы.

Предлагаемый способ позволяет существенно повысить эффективность фитосанации, и при установлении авторского права дает основание для разработки ТУ различных схем фитореабилитации загрязненных территорий.

Источники информации

1. Баран С., Кжывы Е. Фиторемедиация почв, загрязненных свинцом и кадмием, при помощи ракитника / Влияние природных и антропогенных факторов на социоэкосистемы, 2003. №2. - С.39-44.

3. Жадько С.В., Дайнеко Н.М. Накопление тяжелых металлов древесными породами улиц г.Гомеля. // Изв. Гомел. гос.ун-та, 2003. №5. - С.77-80.

4. Кудряшова В.И. Аккумуляция ТМ дикорастущими растениями. - Саранск - 2003 г. - С.10, 18, 50, 78.

5. Rakotosson Voahirana. Les metaux lourds et la phytorenediation: l"etat de l"art. // Eau, ind., nuisances. 2003. №260. - C.45-48.

Способ очистки почв от тяжелых металлов путем выращивания растений - фитомелиорантов на загрязненных почвах с последующим их удалением, причем в качестве растения - фитомелиоранта используют сафлор, семена сафлора высевают в загрязненную почву из расчета 20-22 кг/га, доводят взрослые растения до фазы окончания цветения и начала отмирания нижних листьев, после чего фитомелиорант полностью удаляют из почвы.

30. Больному Д, 37 лет после обследования врач поставил диагноз: хронический генерализованный пародонтит тяжелой степени тяжести при глубине пародонтальных костных карманов более 4мм, деструкции межальвеолярных перегородок до 2/3 их высоты, подвижности зубов II-III степени.

Какой хирургический метод наиболее целесообразен в данной ситуации?

1) простая гингивэктомия

2) радикальная гингивэктомия

3) гингивотомия

4) остеогингивопластика

5) кюретаж

Методы очистки почв от загрязнений нефтепродуктами.

Нефть - маслянистая жидкость, представляющая собой сложный природный раствор органических соединений, в основном углеводородов. В углеводородах растворены высокомолекулярные смолисто-асфальтеновые вещества, а также низкомолекулярные кислород-, азот- и серусодержащие органические соединения. Кроме того, в нефти растворены и некоторые неорганические вещества: вода, соли, сероводород, соединения металлов и других элементов.

В составе нефти различают следующие классы углеводородов:

алифатические (метановые);

циклические насыщенные (нафтеновые);

циклические ненасыщенные (ароматические).

Имеются также смешанные (гибридные) углеводороды: метано-нафтеновые, нафтеново-ароматические.

Среди метановых углеводородов в нефти имеются газообразные, жидкие и твердые. Газообразные (метан, этан, бутан и др.) растворены в жидких углеводородах и выделяются при изменении давления. Твердые высокомолекулярные углеводороды (парафины) также находятся в растворенном состоянии. Их попадание в почву особенно опасно, так как, имея низкую температуру застывания, парафины прочно закупоривают все каналы, по которым происходит обмен веществ между почвой и растением, почвой и атмосферой.

Нефть с преобладанием метановых углеводородов относится к метановому типу. Среди ее разновидностей выделяется высокопарафинистая нефть (содержание парафина более 6 %), парафинистая (1,5-6,0 %) и малопарафинистая (менее 1,5 %).

Нафтеновые углеводороды присутствуют во всех типах нефти, но нефть с преобладанием этого класса углеводородов встречается редко. Среди ароматических углеводородов преобладают низкомолекулярные структуры (бензол, толуол, ксилол, нафталины). В подчиненном количестве имеются гомологи 3-6-кольчатых углеводородов (полициклические ароматические углеводороды - ПАУ). В некоторых разновидностях нефти ПАУ содержат значительное количество 3,4-бенз(а)пирена и других канцерогенных углеводородов.

Высокомолекулярные ароматические структуры, содержащие также кислород, серу, азот, представляют смолы и асфальтены. Смолы - вязкие вещества, асфальтены - твердые. Те и другие растворены в жидких углеводородах. Высокое содержание смол и асфальтенов в нефти определяет увеличение ее удельного веса и вязкости. Такие нефти малоподвижны, но могут создать устойчивый очаг загрязнения в почве.

При хозяйственной деятельности структурных подразделений филиалов ОАО «РЖД» происходит загрязнение земляного полотна железной дороги и прилегающих территорий, а также грунта производственных территорий нефтепродуктами. Причинами этого являются их утечки из цистерн на наливных станциях и во время перевозок из-за неисправности котлов и сливных приборов, попадание смазочных материалов во время заправки букс колесных пар на приемо-отправочных и экипировочных пунктах, попадание масла при экипировке и движении локомотивов и специального подвижного состава, попадание нефтепродуктов на территории баз и хранилищ горюче-смазочных материалов. Загрязнение грунта и почв возможно при аварийных ситуациях в процессе перевозки опасных грузов.

Для обеспечения экологической безопасности железнодорожного транспорта разрабатываются новые технологии, позволяющие исключить возможность загрязнения окружающей среды, а также оборудование для очистки загрязненных грунтов и земляного полотна

Обследование мест импактного загрязнения почв нефтью и нефтепродуктами

Потоки нефти и нефтепродуктов в почвах могут быть видимыми и скрытыми (внутрипочвенными). Видимые потоки оконтуриваются визуально. В этих случаях источник загрязнения определяется без затруднений.

Скрытые потоки возникают чаще всего в результате аварий трубопроводов, проходящих на некоторой глубине от поверхности земли. Появление скрытых потоков нефти фиксируется по резкому увеличению содержания нефтепродуктов в грунтовых водах, находящихся поблизости от источника загрязнения, поверхностных водах (реках, ручьях, каналах, озерах, прудах). Внутрипочвенные потоки проявляют себя высачиванием нефти на склонах, стенках канав, кюветов. Скрытое загрязнение может быть зафиксировано по изменению растительного покрова: пожелтению травянистой растительности, засыханию деревьев и кустарников.

Для оконтуривания нефтяного потока по площади и по вертикали и для определения места разлива необходимо определить ландшафтно-геохимическую позицию исследуемого участка :

1) тип элементарного ландшафта (автономный - на плоской возвышенности, трансэлювиальный - на склоне; элювиально-аккумулятивный - в небольших местных понижениях рельефа; транссупераквальный - подножие склона, поймы рек; трансаквальный - реки и другие водотоки);

2) типы геохимических сопряжений в местных ландшафтах, которые определяют характер перемещения вещества: соотношение бокового и вертикального стоков; формы миграции, характер геохимических и физических барьеров, задерживающих нефть на пути движения потока.

При определении типов сопряжении важное значение имеют:

а) глубина просачивания атмосферных вод; б) глубина залегания грунтовых вод .

Исходя из данных, перечисленных в пунктах I, II закладывается серия почвенных разрезов (или ручных скважин). Количество разрезов зависит от сложности ландшафтной геохимической обстановки и нефтяного потока.

Почвенные разрезы (скважины) объединяются в систему профилей, протягивающихся в направлении движения поверхностного стока от места разлива до места промежуточной или конечной аккумуляции. Минимальное количество профилей - 3, минимальное количество разрезов - 12 (по 3 на каждом профиле и 3 фоновых по одному на каждый элементарный ландшафт). Если при минимальном количестве разрезов достоверно решить задачу нельзя, закладывается необходимое количество дополнительных разрезов.

Почвенные разрезы разделяются на опорные и "приколки" (опытные образцы почв). Опорные разрезы закладываются вблизи места разлива и на основных элементах ландшафтно-геохимического

профиля. Цель изучения таких разрезов - определить глубину просачивания нефти, наличие внутрипочвенного потока, характер трансформации почвенного профиля.

Разрез закладывается приблизительно следующих размеров:

Ширина короткой стенки 0,8 м, длинной стенки - 1,5 м, глубина 2,0 м (если не вскрыты на меньшей глубине грунтовые воды). Располагается разрез так, чтобы лицевая короткая стенка была освещена солнцем. Почву выбрасывают на длинные боковые стенки: верхние горизонты - в одну сторону, нижние - в другую. На лицевой стенке производят отбор проб и по ней - описание почвы. Стенка зачищается, вдоль нее спускается сантиметр, по которому отмечаются глубины взятия проб и границы почвенных горизонтов. Отбор проб начинают с нижних горизонтов. Образец берется размером 10´10 см, а если мощность горизонта меньше, то на всю мощность.

Пробы берутся с помощью почвенного ножа. После взятия каждой пробы нож очищается от нефтепродуктов тампоном, смоченным в органическом растворителе.

Перед взятием образцов проводится описание ландшафта и почвенных горизонтов (цвет, влажность, структура, плотность, механический состав, новообразования, включения, корневая система, карбонатность).

Если выделение генетических горизонтов почв вызывает затруднение, пробы необходимо отбирать через 20 см, сопровождая их подробным описанием.

"Прикопки" для взятия почвенных образцов отрываются на глубину нижнего фронта движения нефтяного потока в почве, которую можно обычно определить по опорному разрезу.

Нефть и нефтепродукты могут двигаться и длительное время сохраняться на глубинах 0,5-1,0 м и более под относительно плотными и мало загрязненными верхними горизонтами разреза. Поэтому изучение опорных разрезов при контроле загрязнения почв нефтью и нефтепродуктами обязательно.

Вследствие сильного варьирования состава и свойств почвы даже в пределах профиля с лицевой стороны разреза по горизонтали берется 5-8 проб для составления смешанного почвенного образца. Общий вес смешанного образца 0,6-0,8 кг }

Понравилась статья? Поделитесь ей