Контакты

Частота вращения пропеллера самолета. Нерпа воздушный винт в кольце. Описание воздушного винта

Воздушный винт в кольце

Самодеятельные конструкторы аэросаней, аэроглиссеров, самолетов и других транспортных средств, использующих воздушные винты, часто решают дилемму получения приемлемой тяги при малых габаритах винтомоторной установки. Одним из способов повышения тяги без увеличения диаметра винта является увеличение количества лопастей. Так увеличение количества лопастей с 2-х до 4-х приводит к увеличению тяги винта на 70-80%. Но в данном случае уменьшается КПД винта, поэтому требуется двигатель с в два раза большей мощностью. Одним из способов увеличения статической тяги винта без повышения мощности двигателя является применение кольцевой насадки. При этом статическая тяга увеличивается в 1,2 раза, что равносильно увеличению диаметра винта на 30%.

Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создается зона пониженного давления, за винтом - повышенного. Вращение лопастей воздушного винта приводит к тому, что отбрасываемые им массы воздуха приобретают окружные и радиальные направления и на это расходуется часть энергии подводимой к винту.

Комплекс воздушный винт - направляющая насадка обладает рядом специфических преимуществ, связанных с действием насадки:

    1. Возникающая вокруг профиля насадки циркуляция набегающего потока разгружает винт, перекладывая часть упора комплекса на насадку.

    2. При работе комплекса в косом потоке насадка формирует поле скоростей перед винтом, выравнивая его практически соосно винту, сохраняя величину скорости натекания. В результате скос натекающего потока мало влияет на винт.

    3. Разница давлений на нагнетающей и засасывающей сторонах лопастей винта без насадки, обуславливающая полезное действие винта, уменьшается вследствие перетекания у концов лопастей (как на крыле самолета). Наличие насадки препятствует такому перетеканию, практически исключает концевые потери и повышает, таким образом, КПД комплекса.

В целом КПД комплекса может на 20 % превысить КПД винта без насадки.

Насадка представляет собой кольцо охватывающее гребной винт. Сечению насадки вдоль оси винта придается крыльевой профиль, обращенный выпуклой поверхностью к винту (рис.1).

Благодаря скосу потока воздуха профиль насадки обтекается под некоторым углом атаки. В результате возникают подъемная сила Cy и сила тяги P . Эффективность насадки существенно зависит от режима работы пропульсивного комплекса. Так, при разбеге, когда винт создает большой упор при низкой скорости самолета, скос потока на входе насадки достаточно велик, что приводит к разгрузке лопастей. Профильное сопротивление насадки при низкой скорости невелико. Однако на высоких скоростях скос потока уменьшается, а профильное сопротивление резко возрастает. Эффективность насадки падает.

Зазор между концом лопасти винта и насадкой составляет 1-2% радиуса винта. При большем зазоре КПД комплекса приблизительно соответствует КПД винта без насадки. При меньшем зазоре сложно обеспечить беспрепятственное вращение винта из-за вибраций и температурных деформаций частей комплекса.

Насадка создает более равномерную нагрузку на двигатель. Уменьшая вредное воздействие косого потока на винт насадка снижает переменные нагрузки на лопасти и вал винта, служит своеобразным демпфером при боковых порывах ветра. Насадка служит также защитой винта от повреждений и делает более безопасной эксплуатацию судна.

Расчет насадки достаточно сложен. Так же как и расчет воздушного винта, он часто не дает на практике расчетных результатов. Поэтому насадку проще подбирать экспериментально.

Ниже даны параметры четырехлопастного движительного комплекса «винт в кольце» в сравнении с двух и четырех лопастными винтами без насадок.

F (кольцо)

отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя
N: (η) = PV/N
(Р - , V - поступательная ).
При таких скоростях полёта, когда на лопастях воздушного винта не возникает местных сверхзвуковых течений, основные потери связаны с индуктивным сопротивлением (индуктивные потери) и профильным сопротивлением. Индуктивные потери минимальны, если винт создаёт за собой поле скоростей, совпадающее с описываемой винтом твёрдой винтовой поверхностью. смещающейся с пост, скоростью в направлении своей оси. Такое или близкое к нему поле скоростей обеспечивается соответствующим выбором распределения циркуляции скорости вдоль лопасти (то есть выбором формы лопасти).
При больших дозвуковых скоростях полёта, когда на лопасти образуются области со сверхзвуковым течением, замыкаемые скачками уплотнений, существенным становится (волновые потери). Эффективным способом уменьшения волновых потерь является использование профилей с возможно большими значениями критических Маха чисел и сверхкритических профилей, а также отгиб лопасти назад (саблевидные лопасти) аналогично стреловидному крылу. Отгиб вперёд (обратная стреловидность) здесь эффекта не даёт вследствие роста относительной скорости обтекания с увеличением радиуса и смешения замыкающего скачка уплотнения к задней кромке. С ростом числа Маха полёта (η) воздушных винтов с широкими гонкими саблевидными лопастями (винтовентиляторов) уменьшается значительно меньше, чем (η) винтов с обычными узкими лопастями, хотя индуктивные потери одинаковы.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Коэффициент полезного действия воздушного винта" в других словарях:

    коэффициент полезного действия воздушного винта Энциклопедия «Авиация»

    коэффициент полезного действия воздушного винта - коэффициент полезного действия воздушного винта — отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя N: η = PV/N (P — тяга винта, V — поступательная скорость … Энциклопедия «Авиация»

    коэффициент полезного действия винта - к.п.д. винта Безразмерная величина, характеризуемая отношением эффективной мощности воздушного винта к мощности воздушного винта. [ГОСТ 21664 76] Тематики винты воздушные авиационных двигателей Синонимы к.п.д. винта … Справочник технического переводчика

    воздушный винт Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    - (пропеллер), лопастный движитель, преобразующий мощность (крутящий момент) двигателя в тягу, необходимую для поступательного движения летательных аппаратов, аэросаней, глиссеров, судов на воздушной подушке. Воздушные винты бывают тянущие –… … Энциклопедия техники

    авиация Энциклопедия «Авиация»

    авиация - Рис. 1. Изменение приведённой «вредной» площади манёвренных истребителей по годам. авиация (франц. aviation, от лат. avis птица) широкое понятие, связанное с полётами в атмосфере аппаратов тяжелее воздуха. А. включает необходимые технические… … Энциклопедия «Авиация»

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, n b , будет меньше мощности двигателя N e , затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается h . Он определяется по формуле

Рис. 11 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 12 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 13 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 11.

График Рис. 12 называется характеристикой силовой установки по мощности.



При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 13.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).

Рис. 14 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя Ne будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 14 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей j возрастает от своего минимального значения j мин до максимального j макс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 14, а видно, что угол атаки лопасти перед взлетом (V=0) за счет перетекания воздуха со скоростью DV немного отличается от угла наклона лопасти на величину фмин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 14, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол j ср .

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение рмакс (Рис. 14, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Винт создает тягу в воздухе, действуя на него подобно крылу. Крыло самолета обычно движется поступательно, тогда как лопасть винта движется и поступательно и вращательно. Лопасть винта представляет собой по форме вытянутый прямоугольник, один размер которого значительно меньше по сравнению с другим, вращающийся с угловой скоростью W около оси х - х (рис.4.1), проходящей у одного края этого прямоугольника. Плоскость прямоугольника, оставляющая некоторый угол j c плоскостью вращения, движется также поступательно в направлении оси вращения со скоростью V. Рассекая лопасть цилиндром радиуса r, ось которого совпадает с осью х; получаем в сечении вытянутый прямоугольник. Так как обычно ширина лопасти невелика по сравнению с ее длиной, то сечение цилиндром заменяется близким им, но удобным для вычерчивания, сечением касательной плоскости к цилиндру и перпендикулярной оси лопасти (рис.4.1).

Так как лопасть совершает сложное движение - поступательное и вращательное, то нужно сложить эти два движения. Геометрическая сумма окружной скорости вращения U = W r, и поступательной скорости (скорость полета) V, (рис.4.2) дает вектор W (скорость движения воздушного потока относительно профиля сечения). Если взять другое сечение плоскостью, касающейся цилиндра меньшего или большего радиуса, то составляющая скорость V остается той же, а окружная скорость Wr будет меньше или больше; последняя изменяется по линейному закону, становясь на оси винта равной нулю.

Так как лопасть берется плоской, то угол j на всех радиусах будет одним и тем же, а угол β , называемый углом притекания потока к сечению, будет различным на разных радиусах в связи с переменной окружной скоростью вращения W r . Следовательно, с уменьшением радиуса r угол β увеличивается, а угол a =φ-β уменьшается и может стать равным нулю или даже отрицательным.

Воздушные винты подразделяются на винты фиксированного шага (ВФШ) и винты изменяемого шага (ВИШ).

Воздушный винт преобразует крутящий момент ТВД или ПД в силу тяги. При этом имеют место потери, оцениваемые коэффициентом полезного действия (к. п. д.) винта.

ВФШ характеризуется постоянным углом установки лопасти. В конструктивном отношении этот винт имеет втулку, в которой жестко крепятся лопасти, которые передают ей тягу, и ей же воспринимается крутящий момент с вала двигателя на винт.

ВИШ состоит из лопастей, втулки с механизмом поворота лопастей и устройств, обеспечивающих его надежную работу. Для управления винтом имеется аппаратура автоматического и ручного действия.

К воздушным винтам предъявляются следующие требования:

Высокий к. п. д.;

Для ВИШ - изменение угла установки лопастей в диапазоне, обеспечивающем легкий запуск двигателя; минимальную положительную тягу винта на режиме малого газа; максимальную отрицательную тягу при пробеге и минимальное лобовое сопротивление лопастей во флюгерном положении; автоматическое изменение угла установки лопастей в зависимости от режима полета ВС и работы двигателей со скоростью поворота не менее 10 °/с;

Минимальные значения реактивного и гироскопического моментов;

В конструкции винта и регулятора частоты вращения должны быть автоматические защитные устройства, ограничивающие произвольный переход лопастей винта на малые углы установки и предотвращающие возникновение отрицательной тяги в полете;

Защита лопастей и обтекателя втулки винта от обледенения;

Достаточная прочность при малой массе, уравновешенность и минимальный шум.

Основные характеристики винта принято подразделять на геометрические, кинематические и аэродинамические.

4.2. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

К геометрическим характеристикам относят: диаметр D винта, число лопастей, форма лопасти в плане, толщина c , хорда сечения b и углы установки сечений лопастей. Диаметр винта (D=2R) определяет окружность, описываемая концами лопастей при вращении винта относительно его оси (рис.4.3). Диаметр является главнейшей характеристикой винта, так как он преимущественно определяет его тяговые характеристики.

Величина диаметра выбирается из аэродинамических соображений и согласуется с возможностью размещения винта на ВС. Диаметры современных винтов составляют от 3м до 6 м.

Большие диаметры винтов приводят к низким к.п.д. в связи с возможностью появления сверхзвуковых скоростей на концевых участках лопастей, а также усложняют компоновку двигателя на самолете. Малые значения диаметров не позволяют преобразовать заданный крутящий момент двигателя в необходимую тягу.

Если разрезать лопасть на некотором радиусе r цилиндрической поверхностью, имеющей продольную ось, совпадающую с осью вращения винта, то отпечаток разреза называют сечением лопасти. Это сечение имеет крылообразную форму профиля. Часть лопасти, находящаяся между двумя радиусами (r и r r ), представляет собой элемент лопасти с площадью ΔS =bΔr. Здесь и далее вместо дугообразных сечений рассматриваются плоские.

Отношение текущего радиуса сечения r к радиусу винта R называют относительным радиусом =r/R. Радиус неработающей части лопасти, занятой втулкой, обозначают r 0 . и 0 = r 0 /R .

Для преобразования крутящего момента двигателя в тягу с минимальным значением диаметра винт имеет несколько лопастей. На современных ТВД устанавливают обычно четырехлопастные винты. Большее число лопастей снижает к.п.д. На мощных ТВД вместо увеличения числа лопастей применяют соосные винты, расположенные друг за другом и вращающиеся в противоположных направлениях вокруг одной оси.

Характерными размерами сечения лопасти являются максимальные ширина b и толщина-с лопасти, а также их относительные величины

= и =

У современных винтов m ax = 8…10% (рис. 4.4).

Линию (см. рис.4.3), проходящую через середины сечений лопасти, называют ее осью. Вид оси лопасти (прямая или кривая) и распределение ширины лопасти вдоль этой оси характеризуют форму лопасти в плане. Приближение m ax к концу лопасти повышает тягу винта, но увеличивает изгибающий момент вследствие перемещения центра давления к концу лопасти.

Максимальная толщина сечения лопасти уменьшается к ее концу (при больших скоростях обтекания необходима меньшая относительная толщина профиля). Для сравнительной оценки этой толщины рассматривают ее относительное значение на 0 =0, 9 и обозначают 0,9 . Для современных винтов 0,9 =4…5% (рис.4.4).

4.3.КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНА

Плоскость, перпендикулярная оси вращения воздушного винта и проходящая через любую точку лопасти, называется плоскостью вращения винта. Таких параллельных плоскостей бесчисленное множество. Обычно под плоскостью вращения винта понимается плоскость, проходящая через середину или конец хорды профиля (рис.4.5).

Сечения лопасти наклонены к плоскости вращения. Угол установки сечения лопасти φ измеряют между плоскостью вращения винта и хордой профиля. Величина φ определяет для данного радиуса винта значение шага h как расстояние, на которое продвинулся бы воздушный винт в неподатливой среде за один оборот

h=2r tgφ n s ,

где n s -число оборотов винта в секунду.

При эксплуатации винтов значение шага не замеряется, но термин «шаг винта» получил распространение.

Кинематическими характеристиками винта являются окружная, поступательная и результирующая скорости сечения лопасти, углы атаки и притекания потока, коэффициент скорости. В полете сечение лопасти винта вращается с окружной скоростью U=ωr=2πл s r и движется поступательно со скоростью полета V. Кроме этих основных

скоростей, в плоскости вращения возникают индуктивные скорости подсасывания и закручивания, которые для упрощения здесь не рассматриваются. В этом случае результирующая скорость W определяется по формуле

Направление скорости W образует с хордой профиля угол атаки α, а со скоростью U угол притекания струи β. Тогда

φ=a+β,

β=arc tg =arc tg .

При постоянных значениях поступательной скорости V и угла установки φ с увеличением радиуса сечения лопасти угол β уменьшается, а угол a увеличивается.

Для того чтобы каждое сечение лопасти находилось под одним и тем же наивыгоднейшим углом атаки a наив (при котором аэродинамическое качество максимальное), необходимо с уменьшением угла β уменьшать угол установки φ . Поэтому у лопасти воздушного винта углы установки в корневой части (у комля) наибольшие, а по направлению к концу лопасти уменьшаются (рис. 4.6). Такое распределение углов установки сечений лопасти называется геометрической круткой. Крутка должна обеспечивать условие a=φ-β =const =a наив .

Для определения величины крутки лопасти пользуются понятием относительной крутки сечения лопасти (рис.4.7), сравнивая угол φ установки любого сечения лопасти с углом установки сечения, расположенного на =0,75 и обозначаемого в виде φ 0,75: =φ - φ 0,75 . Общая крутка лопасти определяется разностью углов установки в начале рабочей части лопасти φ ro и на конце лопасти φ R . Так как по радиусу винта угол установки лопасти меняется, то он измеряется на номинальном радиусе r ном . Значение r ном обычно берется равным 1000 мм для винтов с D<4 м и 1600 мм для винтов с D>4 м.

При постоянных значениях угла установки сечения лопасти (β и окружной лопасти полета U ) угол атаки изменяется в зависимости от скорости полета. При увеличении скорости V угол атаки a уменьшается, а при уменьшении V - увеличивается. Для того чтобы при изменении скорости полета угол атаки a оставался постоянным, необходимо изменять угол установки лопасти (рис. 4.8).

Это возможно путем поворота лопасти во втулке винта относительно собственной оси винта. В случае ВФШ это достигается увеличением окружной скорости U (увеличение частоты вращения винта).

4.4. АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

К аэродинамическим характеристикам винта относятся тяга Р , момент сопротивления М и мощность N , необходимые для вращения винта, и коэффициент полезного действия η в

Как указывалось выше, лопасти винта, находящиеся во вращательном и поступательном движении, имеют разные скорости движения по отношению к набегающему потоку воздуха. Рассматривая два сечения лопасти (см. рис.4.9) на радиусах r и r+ Δr и полученную между этими сечениями часть лопасти называется элементом лопасти на радиусе r. Площадь этого элемента лопасти будет dS=bdr.

В обращенном движении, на указанный элемент лопасти набегает поток со скоростью V параллельной оси винта, и, во-вторых,- поток со скоростью U в направлении, перпендикулярном скорости V , дающие результирующую скорость W- скорость набегания потока на элемент лопасти. Угол между вектором W и хордой сечения есть угол атаки сечения α .

Угол φ между хордой сечения и вектором U (или, что тоже, плоскостью вращения винта) есть угол установки сечения лопасти, а угол β между векторами скоростей U и W - угол притекания. Такой элемент лопасти можно рассматривать как крыло и применить к нему общие формулы аэродинамики.

Подъемная сила для элемента лопасти:

dY=C y d S , (4.1)

и лобового сопротивления

dX =C x dS . (4.2)

Как известно из аэродинамики, коэффициент лобового сопротивления С x зависит от относительного размаха крыла. Какой же относительный размах принимать в данном случае? На первый взгляд, кажется, что следует принять бесконечный размах; но, как известно из аэродинамики, такое крыло не будет иметь индуктивного сопротивления. Поэтому оно не будет вызывать индуктивных скоростей, что противоречит тому, что должно быть в струе идеального пропеллера. Таким образом, если принять элемент лопасти за крыло бесконечного размаха, то следует каким-либо другим путем находить вызванную винтом скорость, и тогда треугольник скоростей в сечении лопасти следует принимать, как показано на рис. 4.5. Для того чтобы можно было воспользоваться этими формулами для определения тяги и мощности элемента лопасти, следует принять в них С y и С x для какого-то фиктивного относительного размаха, причем считать, что элемент работает в лопасти изолированно - без какого бы то ни было влияния соседних элементов. Далее следует допустить, что воздействие потока на такой элемент, несмотря на то, что он движется по винтовой траектории, подобно воздействию потока на крыло, движущегося поступательно. Это последнее предположение называется, обычно, гипотезой плоских сечений.

dY= С y b dr (4.3)

dX= С x b dr (4.4)

Абсолютные значения линейных размеров лопасти выразятся в относительной форме:

b= D, r= и dr=d

Выразим W через U и β.

U=ώr=2πn s r= πn s (4.5)

W 2 = = (4.6)

Значения элементарных подъемной силы dY и силы сопротивления dX с учетом (4.6) выразятся:

dY=C y =C y (4.7)

dX=C x = C x (4.8)

Спроектируем подъемную силу и лобовое сопротивление элемента допасти на два взаимно перпендикулярных направления - на направление, параллельное оси винта, и на направление, совпадающее с плоскостью вращения винта (рис. 4.10).

Проекция dY на ось винта дает тягу dP элемента лопасти:

dP=dYcosβ-dXsinβ= ()(4.9)

Проекция dX на плоскость вращения винта дает силу сопротивления вращению этого элемента:

dT=dYsinβ+dXcosβ= () (4.10)

Момент сопротивления вращению dM элемента лопасти:

dM=dT r=dT = ( ) . (4.11)

Потребная мощность вращения dN элемента лопасти:

dN=dM ω= dM 2πn s = ( ) (4.12)

Общие тяга Р и мощность N для винта с i лопастями выразятся соответствующими интегральными зависимостями выражений (4.9) и (4.12):

P= () . (4.13)

N= () . (4.14)

В формулах (4.13) и (4.14) подынтегральные выражения являются переменными функциями, зависящими от геометрических и аэродинамических характеристик лопасти винта, и, обозначив их соответственно С Р – коэффициент тяги и С N – коэффициент мощности, получим окончательное выражение для тяги и мощности:

P= C P ρn 2 D 4 , (4.15)

N= C N ρn 3 D 5 , (4.16)

Коэффициент полезного действия винта η в можно записать в виде:

η в = = = = λ= π (4.17)

Относительная скорость есть отношение скорости набегающего потока к окружной скорости на конце лопасти:

Рис. 4.11а. Аэродинамическая характеристика винта

Здесь отношение называется поступью винта (поступательное перемещение винта в податливой среде), а =λ- относительной поступью, тогда: λ=π .

При подборе винта и при аэродинамическом расчете самолета задается мощность, передаваемая двигателем на винт, и требуется еще знание лишь коэффициента полезного действия винта,- тягой винта при аэродинамическом расчете обычно не пользуются. Удобно совместить кривые С N и ηтак, чтобы на кривых С N были нанесены соответствующие значения η,тогда получается диаграмма, изображенная на рис. 4.11а.

На ней по оси абсцисс отложены λ, по оси ординат С N ; кривые С N расположены по параметру угла установки винта φ; на кривых С N нанесены точки соответствующих КПД винта, при соединении которых образуются кривые одинаковых КПД. Как видно, кривые одинаковых КПД замкнутые и пересекаются соответствующими кривыми С N дважды. Ядро этих замкнутых кривых соответствует наибольшему значению КПД. Такая диаграмма называется аэродинамической характеристикой винта. На диаграмме должны быть обозначены условия испытаний, т. е, тип винтового прибора, диаметр испытанного винта, тип винта или его геометрическая характеристика, формы и размеры тела за винтом, скорость потока и число оборотов при испытании. Диаграмма, приведенная на рис. 197, является основной для подбора винтов.

4.5. РЕЖИМЫ РАБОТЫ

Рис. 4.12. Работа винта на месте

При постоянном угле установки лопасти j ее угол атаки α зависит от величины скорости полета (см. рис. 4.10). При увеличении скорости полета угол атаки уменьшается. В этом случае говорят, винт «облегчается», так как момент сопротивления вращению винта уменьшается, что вызывает увеличение частоты его вращения. При уменьшении скорости полета, наоборот, угол атаки увеличивается и винт «затяжеляется», частота его вращения снижается.

Мощность винта N и коэффициент мощности C N считаются положительными, когда крутящий момент от аэродинамических сил винта противоположен направлению его вращения.

Если крутящий момент этих сил направлен в сторону вращения винта, т. е. сила сопротивления вращению T <0, мощность винта считается отрицательной.

Ниже рассмотрены наиболее характерные режимы работы винта.

Режим, при котором поступательная скорость V=0, следовательно, λ и h в равны нулю, называется режимом работы винта на места (рис. 4.12). На рис. 4.11 этому режиму cooтветствует точка а, где коэффициенты тяги Ср и мощности C N обычно имеют максимальные значения. Угол атаки лопастей ά при работе винта на месте примерно равен углу установки φ. Так как h в =o, то винт при работе на месте никакой полезной работы не производит.

Режим работы винта, когда при наличии поступательной скорости создается положительная тяга, называется пропеллерным режимом (рис.4.13). Он является основным и наиболее важным режимом работы, который используется при рулении, взлете, наборе высоты, горизонтальном полете самолета и частично - на снижении и посадке. На рис. 4.11 этому режиму полета соответствует участок аб. По мере увеличения относительной поступи λ уменьшаются значения коэффициентов тяги и мощности. Коэффициент полезного действия винта при этом сначала возрастает, достигая максимума в некоторой точке б, а затем падает.

Точка б характеризует оптимальный режим работы винта для данного значения угла установки лопастей j . Таким образом, пропеллерному режиму работы винта соответствуют положительные значения коэффициентов С P , C N и h в. Такие условия полета, как правило, возникают при снижении самолета. В силовых установках с ВФШ возможна раскрутка винта.

Рис.4.15. Работа винта на режиме торможения

Режим работы, при котором винт не создает ни положительной, ни отрицательной тяги (сопротивления), называется режимом нулевой тяги . На этом режиме винт как бы свободно ввинчивается в воздух, не отбрасывая его назад и не создавая тяги (рис. 4.14). Режиму нулевой тяги на рис. 4.11 соответствует точка в . Результирующая сила dR оказываетсяв третьем квадранте.Здесь коэффициент тяги С р и к. п. д. винта h в равны нулю. Коэффициент мощности C N имеет некоторое положительное значение,соответствующее затратам энергии на преодоление вращению винта. Угол атаки лопастей при этом, как правило, несколько меньше нуля.

Режим работы винта, когда создается отрицательная тяга (сопротивление) при положительной мощности на валу двигателя, называется режимом торможения , или тормозным режимом винта (рис.4.15). На этом режиме угол притекания струй β больше угла установки φ , т.е. угол атаки лопастей α- величина отрицательная. В данном случае воздушный поток оказывает давление на спинку лопасти, чем и создает отрицательную тягу, т.к. результирующая сила dR оказывается в третьем квадранте. На рис.4.11 этому режиму работы винта соответствует участок, заключенный между точками в и г , на котором коэффициенты Ср и η в имеют отрицательные значения, а значения коэффициента С N изменяются от некоторого положительного значения до - нуля.

Рис.4.16 Работа винта на режиме авторотации

Как и в предыдущем случае, для преодоления момента сопротивления вращению винта требуется определенная мощность двигателя. Отрицательная тяга винта используется для сокращения длины послепосадочного пробега. Для этого лопасти специально переводят на минимальный угол установки φ min , при котором во время пробега самолета угол атаки α отрицательный.

Режим работы, когда мощность на валу двигателя равна нулю а винт вращается за счет энергии набегающего потока (под действием аэродинамических сил, приложенных к лопастям), называется режимом авторотации (рис. 4.16). Двигатель при этом развивает мощность N , необходимую лишь для преодоления внутренних сил и моментов сопротивления, образующихся при вращении винта.

Результирующая сила dR= - dP ориентировано строго по оси вращения винта и направлено против полета самолета. На рис. 4.11 этому режиму соответствует точка г. Тяга винта, как и на режиме торможения, отрицательная.

Рис. 4.17. Работа винта на режиме ветряка

Режим работы, при котором мощность на валу двигателя отрицательна, а винт вращается за счет энергии набегающего потока, называется режимом ветряка (рис. 4.17). На этом режиме винт не только не потребляет мощности двигателя, а сам вращает вал двигателя за счет энергии набегающего потока. На рис. 4.11 этому режиму соответствует участок правее точки г и тогда, рассматривая винт как источник энергии, h в > 0

Режим ветряка применяют для запуска остановившегося двигателя в полете. В этом случае вал двигателя раскручивается до необходимой для запуска частоты вращения, не требуя специальных пусковых устройств.

Торможение самолета при пробеге осуществляется переводом лопастей винта на минимальный угол установки и начинается на режиме ветряка, последовательно проходя стадии, авторотации, торможения, режима нулевой тяги. С уменьшением скорости пробега винт начинает работать в режиме минимальной тяги

4.6. КЛАССИФИКАЦИЯ ВИНТОВ ИЗМЕНЯЕМОГО ШАГА

Ранее было показано, что величина угла атаки лопастей при неизменном угле установки φ зависит от скорости полета. В ВФШ при малых скоростях полета (взлет) углы атаки сечений лопастей близки к углам установки лопастей, что вызывает «затяжеление» винта. В этом случае мощность двигателя недостаточна для раскрутки винта до взлетных (максимальных) оборотов. В горизонтальном полете при большой поступательной скорости угол атаки лопастей может существенно уменьшиться, что создаст избыточную мощность двигателя (по сравнению с винтом), которая приведет к росту оборотов до недопустимо больших значений, при которых не обеспечивается надежность работы двигателя.

В прошлом, когда диапазон скоростей полета самолетов был невелик, применялись винты фиксированного шага. По мере совершенствования самолетов и увеличения диапазона скоростей полета появилась потребность в винтах изменяемого шага. Первые ВИШ имели сравнительно небольшой диапазон изменения углов установки лопастей, который обычно не превышал 10°. Это были, как правило, двух шаговые винты. Взлет и набор высоты в этом случае производились на малом угле установки (малом шаге), позволяющем получить взлетную частоту вращения ротора двигателя при работе на месте. При переходе на горизонтальный полет лопасти переводились на большой шаг с помощью специальных механизмов.

С дальнейшим увеличением диапазона скоростей полета самолетов и, следовательно, с увеличением диапазона изменения углов установки лопастей, стали применять винты с автоматическими системами регулирования частоты вращения путем изменения угла установки в зависимости от режима полета.

В зависимости от источника энергии для принудительного перемещения лопастей относительно их продольных осей ВИШ подразделяются на:

Механические (энергия отбирается от двигателя с помощью дифференциального шестеренчатого механизма или от усилия летчика);

Электрические, в которых перемещение лопастей производится с помощью электрического двигателя, размещенного в коке винта и связанного с комлями лопастей конической шестеренчатой передачей;

Гидравлические, в которых силовым элементом является гидропоршень в коке винта, поступательное перемещение которого преобразуется с помощью кривошипно-шатунного механизма во вращательное движение лопастей.

В основе регулирования ВИШ лежит поддержание постоянных оборотов винта (двигателя) вне зависимости от развиваемой мощности двигателя за счет изменения угла установки лопастей с помощью центробежного регулятора.

При отклонении от равновесного режима двигателя в сторону большей развиваемой мощности попытка увеличить его обороты парируется установкой лопастей на больший угол. В этом случае частота вращения винта остаётся на прежнем уровне (в пределе допуска) с одновременным увеличением тяги. При отклонении режима в сторону уменьшения процесс регулирования идёт в обратном направлении.

Винты с такими системами регулирования частоты вращения получили название воздушных автоматических винтов. Конструктивно винты автоматические представляют собой весьма сложные агрегаты, успешная эксплуатация и техническое обслуживание которых возможны лишь при условии глубокого изучения принципов их работы и правил технической эксплуатации.

4.7. СИЛЫ И МОМЕНТЫ, ДЕЙСТВУЮЩИЕ НА ЛОПАСТИ

Центробежные силы лопастей и их моменты

На поперечном сечении произвольного радиуса лопасти выделим концевые элементарные массы. При вращении винта на эти элементы лопасти действуют центробежные силы, направленные по радиусу от оси вращения и лежащие в плоскости вращения этих элементов.

Векторы центробежных сил dP ц1 и dP ц2 крайних частей элемента лопасти (рис. 4.18) направлены от оси вращения и перпендикулярны к ней. Их можно разложить в соответствующих плоскостях вращения на осевые и нормальные составляющие dK 1 ,dK 2 и df 1 , df 2 . Последние силы показаны также на поперечном сечении лопасти.

Разложение векторов центробежных сил для других таких же частей сечения, расположенных между передней и задней кромками в пределах этого же сечении лопасти, даёт эпюру поперечных составляющих центробежных сил (рис. 4.19) Поперечные составляющие центробежных сил (рис. 4.18) меняют свое направление при переходе через ось лопасти. Заменяя силы одного направления, соответствующими равнодействующими dF 1 и dF 2 , получаем момент М ц от поперечных составляющих центробежных сил, который стремится повернуть лопасть на уменьшение угла установки.

В винтах изменяемого шага поворот лопастей на необходимый угол установки происходит относительно осей, совпадающих с осями комлевых (цилиндрических) частей лопастей.

Величина момента М ц, зависит от частоты вращения винта, материала, геометрических размеров, углов установки и крутки лопасти.

Аэродинамические силы и их моменты

Аэродинамические силы появляются в результате воздействия воздушного потока на лопасть и распределяются по всей её поверхности. Такую схему нагружения лопасти можно рассматривать, как жёстко закрепленную одним концом балку, подверженную действию распределенной аэродинамической нагрузки, которая создает изгибающий и крутящий моменты.

Равнодействующая аэродинамических сил элемента лопасти приложена в центре давления, который обычно находится впереди оси вращения лопасти (см. рис. 4.5) и стремится повернуть последнюю в сторону увеличения угла установки. Величина суммарного момента аэродинамических сил лопасти для данного винта зависит от углов атаки лопасти и величины результирующей скорости набегающего потока. Значение момента аэродинамических сил невелико.

При отрицательных углах атаки лопастей направление равнодействующей силы меняется так, что крутящие моменты аэродинамических сил в этом случае стремятся повернуть лопасти в сторону уменьшения угла установки.

Центробежные силы противовесов и их моменты

Обычно величина крутящего момента от аэродинамических сил невелика, поэтому он не может быть использован в качестве самостоятельного источника энергии для поворота лопастей в сторону увеличения угла установки. В связи с этим на некоторых винтах изменяемого шага дополнительно устанавливают специальные противовесы (грузы), которые при помощи кронштейнов закрепляют к комлевым частям лопастей (рис. 4.20).

При вращении винта возникают центробежные силы противовесов Р п , направленные от оси вращения. Противовесы относительно лопастей размещают таким образом, чтобы составляющие Р n на плече h создавали крутящий момент лопасти М ц =Р nf h, стремящийся повернуть лопасть в сторону увеличения угла установки. Величина крутящего момента противовесов М ц зависит от их массы, расстояния от оси вращения, плеча h и частоты вращения винта. Все эти параметры выбирают с таким расчетом, чтобы совместное действие двух крутящих моментов от центробежных сил противовеса и аэродинамических сил обеспечивало поворот лопасти в сторону увеличения угла установки с необходимой интенсивностью поворота. Составляющая Р пк противовеса, направленная вдоль лопасти, вызывает изгибающий момент, который воспринимается кронштейном противовеса.

4.8. СХЕМЫ РАБОТЫ ВОЗДУШНЫХ ВИНТОВ С ГИДРАВЛИЧЕСКИМИ МЕХАНИЗМАМИ ПОВОРОТА ЛОПАСТЕЙ

В настоящее время в винтовой авиации наибольшее распространение получили гидравлические винты, у которых изменение углов установки лопастей осуществляется под давлением масла. По принципу действия они подразделяются на двух сторонние и одно сторонние винты. В гидравлических односторонних винтах масло (от системы охлаждения двигателя) от специального насоса под повышенным давлением подается в одну из полостей гидроцилиндра через золотник центробежного регулятора. Другая полость постоянно соединена со сливной магистралью, служащей системой питания двигателя (Р м )

Односторонний винт обратного действия

Кинематическая схема винта (см. рис.4.21) выполнена так, что увеличение угла установки лопастей происходит при перемещении поршня 2 вправо, когда давление в полости А превысит давление в полости Б. Уменьшение угла установки осуществляется под действием момента от поперечных составляющих центробежных сил лопасти М ц/б путём слива масла из полости А гидроцилиндра.

В общем случае на лопасть действуют моменты: М ц/б – момент от поперечных составляющих центробежных сил, направленный на уменьшение угла установки лопасти j; встречно ему направлен момент от аэродинамических сил М а/д и действующий в том же направлении момент от давления в полости А на поршень – М А.

На равновесном режиме, когда пружина 7 уравновешивает усилие от центробежных грузиков 6, бурт золотника 5 перекрывает полость А цилиндра 1 и создает в нем гидроупор, который воспринимает усилие от М ц\б и лопасть находится в фиксированном положении.

В случае увеличения мощности двигателя (возрастает подача топлива) при сохранении прежней мощности потребления винтом, произойдет рост оборотов двигателя. Это вызовет увеличение центробежных сил грузиков 6 и золотник 5 откроет доступ маслу в полость А. В этом случае М А + М а\д > М ц\б ,что вызовет перемещение лопасти на больший угол j. С увеличением потребляемой мощности винтом частота его вращения снижается до заданной величины и устанавливается равновесный режим.

С уменьшением мощности двигателя (сокращение подачи топлива) процесс происходит в обратном порядке. Особенностью таких винтов является их относительная простота конструкции. К числу недостатков следует отнести возможность раскрутки винта при нарушении герметичности полости А гидроцилиндра. Под действием М ц\б лопасти могут переместиться на минимальный угол установки. С этой целью необходимо предусматривать в конструкции винта специальные упоры, исключающие перемещение поршня при разгерметизации полости А.

Односторонний винт прямого действия имеет механизм поворота лопастей с односторонним подводом масла. В нем сила давления масла используется только для перевода лопастей на уменьшение углов установки (рис. 4.22).

Для перевода лопастей на увеличение углов установки применяются противовесы так, что момент от поперечных составляющих центробежных сил М г направлен встречно М ц/б. Таким образом, в сторону уменьшения угла установки лопасти поворачиваются при выполнении следующего неравенства: М А + М ц/б >М гр. + М а/д.

В этом случае масло подается в полость А через золотниковый канал центробежного регулятора.

Лопасти в сторону увеличения угла установки поворачиваются при условии: М гр. + М а/д > М А + М ц/б , что имеет место при сливе масла из полости А в картер двигателя в связи с перемещением золотника вверх за счет увеличенных центробежных сил грузиков регулятора. Применение противовесов в механизме поворота лопастей имеет большое значение в обеспечении безопасности полета при снижении давления в маслосистеме. В этом случае исключается возможность поворота лопастей винта в сторону малых углов установки, а, следовательно, раскрутки винта и появления отрицательной тяги. Однако наличие противовесов увеличивает массу винта.

В винтах двухстороннего действия давление масла используется как для увеличения, так и уменьшения угла установки лопастей (рис. 4.23) зависимости от положения золотника 5 масло от насоса может попадать как в полость А, так и в полость Б цилиндра. Поршень соединен с лопастью таким образом, что при его поступательном движении лопасть будет совершать вращательное движение относительно своей оси.

Если масло от насоса будет поступать в полость А , то из полости Б оно будет сливаться. Тогда соотношение моментов:

М А + М а/д >М Б + М ц/б,

где М А - А .

В данном случае угол установки лопастей будет увеличиваться. При подаче масла в полость Б из полости А масло будет сливаться и угол установки лопастей уменьшится. Соотношение моментов в этом случае будет

М А + М а/д,< М Б + М ц/б ,

где м Б - момент, создаваемый силой давления масла в полости Б .

Из рассмотрения работы винтов двустороннего действия видно, что моменты, создаваемые силой давления масла, являются управляемыми. Они определяются положением золотника 5. Моменты M а/д, и М ц/б , постоянно действующие, и управлению не поддаются.

4.9. СОВМЕСТНАЯ РАБОТА ВИНТА И РЕГУЛЯТОРА

На современных самолетах с ТВД применяются только автоматические винты, для чего в рассмотренных выше системах регулирования устанавливаются регуляторы частоты вращения с датчиком центробежного типа (рис.4.21). Назначение регуляторов состоит в том, чтобы, работая совместно с ВИШ, автоматически поддерживать заданную частоту вращения ротора двигателя постоянной. Задается она степенью сжатия пружины регулятора при помощи механизма настройки 7.

Предположим, что регулятору уже задана некоторая частота вращения. Она автоматически поддерживается постоянной системой винт-регулятор следующим образом. Во время работы двигателя на золотник 5 регулятора непрерывно действуют две силы: упругая сила пружины 7, стремящаяся опустить золотник вниз, и центробежные силы грузиков 6, стремящиеся поднять золотник вверх. Если двигатель работает на установившемся режиме, когда частота вращения поддерживается постоянной, золотник 5 находится в нейтральном положении (каналы для прохода масла перекрыты буртиками золотника), а между упругой силой пружины и центробежными силами грузиков устанавливается равновесие. Частота вращения ротора двигателя, соответствующая этому положению, называется равновесной или заданной. Очевидно, чем больше сжата пружина, тем большие потребуются центробежные силы грузиков, а, следовательно, и большая частота вращения ротора двигателя для удержания золотника в нейтральном положении и наоборот.

Предположим теперь, что частота вращения ротора двигателя по какой-либо причине изменилась, например, увеличилась. Очевидно, это возможно или при увеличении мощности, развиваемой двигателем, или при уменьшении мощности, поглощаемой винтом.

Рассмотрим наиболее простой случай - увеличение мощности двигателя за счет увеличения подачи топлива (при перемещении рычага управления двигателем (РУД) вперед). При этом нарушается равенство мощностей двигателя и винта, в результате чего частота вращения ротора двигателя увеличивается. На это реагирует центробежный регулятор частоты вращения, который должен поддерживать ее постоянной. При увеличении частоты вращения увеличиваются центробежные силы грузиков 6, которые, преодолевая упругую силу пружины, поднимают золотник 5 вверх. В этом случае масло с высоким давлением пойдет в полость А , а из полости Б оно будет сливаться в двигатель.

Моментами силы давления масла и аэродинамических сил лопасти будут поворачиваться в сторону увеличения угла установки, преодолевая при этом момент поперечных составляющих центробежных сил лопастей. Таким образом, винт будет «затяжеляться», его момент сопротивления вращению увеличится, а, следовательно, увеличивается и потребляемая им мощность. Процесс затяжеления винта будет продолжаться до восстановления заданной частоты вращения, когда по мере уменьшения центробежных сил грузиков золотник регулятора будет возвращен пружиной в нейтральное положение и перекроет масляные каналы.

При уменьшении мощности двигателя (за счет сокращения подачи топлива) будет наблюдаться обратная картина. Частота вращения ротора двигателя начнет снижаться, от чего упругая сила пружины, преодолевая центробежные силы грузиков, опустит золотник вниз. В этом случае масло от насоса поступает в полость Б , а из полости А оно сливается в двигатель. Лопасти винта под действием момента силы давления масла (в полости Б ) и моментов поперечных центробежных сил, преодолевая моменты аэродинамических сил, будут поворачиваться в сторону уменьшения углов установки. Винт при этом делается легче, так как потребляемая им мощность уменьшается. Процесс облегчения винта закончится, когда заданная частота вращения восстановится и золотник возвратится в нейтральное положение.

Дроссельная характеристика винта.

Описанный процесс регулирования частоты вращения при изменении подачи топлива представлен графикам (рис. 4.24), где показаны зависимости мощностей двигателя и винта от частоты вращения при разных расходах топлива.

Развиваемая мощность двигателя N дв имеет (с определенной погрешностью) степенную зависимость от частоты вращения: N дв ~ n (2…3) В то время как потребляемая мощность винтом N в имеет более высокую зависимость от его оборотов: N в ~ n 5 . Исходным режимом работы силовой установки является точка пересечения кривой мощности двигателя, соответствующей расходу топлива Q T 0 , с кривой мощности винта, лопасти которого установлены под углом φ 0 . Этому установившемуся режиму работы силовой установки соответствует частота вращения п 0 . При увеличении подачи топлива характеристика мощности двигателя будет располагаться выше исходной (изображена пунктиром Q T 1 > Q T 0 ) вследствие более высокой температуры газов перед турбиной. Как видно из графика, пересечение кривых мощности винта при φ 0 и мощности двигателя при Q T 1 > Q T 0 соответствует частоте вращения, которая больше п 0 . В данном случае центробежный регулятор, обеспечивая постоянство частоты вращения, переставит лопасти на больший угол установки φ 1 (пунктирная кривая мощности, винта при φ 1 >φ 0 ), что вызовет снижение оборотов, до ранее установленных п 0 .

Таким образом, с увеличением подачи топлива, а, следовательно, и с увеличением мощности двигателя винт будет затяжеляться, т. е. угол установки лопастей увеличивается и тяга возрастает. При уменьшении подачи топлива, наоборот, регулятор, поддерживая заданную частоту вращения, переводит лопасти на меньшие углы установки, тем самым, уменьшая тягу двигателя. Качественный характер изменения угла установки лопастей φ от подачи топлива Q T в двигатель представлен на рис 4.25.

Скоростная характеристика винта.

Рассмотрим теперь работу системы винт-регулятор при изменении скорости полета и постоянной подаче топлива в двигатель. Предположим, самолет переводится с режима набора высоты в режим горизонтального полета или с режима горизонтального полета в режим снижения. И в том и другом случаях скорость полета увеличится при неизменной подаче топлива.

На рис. 4.26 представлены графики изменения располагаемой мощности ГТД - N дв и потребляемой воздушным винтом мощности N в в зависимости от скорости полета V . В области дозвуковых скоростей полета мощность (что и тяга) двигателя N дв с увеличением скорости полета незначительно снижается в то же время N в падает более интенсивно. При скорости V 0 система двигатель – винт работает на равновесном режиме (N дв = N в ). С увеличением скорости полета до V 1 возникает избыток мощности ( N дв > N в) , вызывающий рост оборотов винта. Стремясь удержать обороты на заданном значении, центробежный регулятор оборотов переставит лопасти на большие углы установки φ 1 Это вызовет снижение оборотов за счет большей потребляемой мощности винта N в (φ 1) и равновесный режим восстанавливается, но при больших значениях углов уста новки лопастей.

Характер изменения φ=f(V) показан на графике рис.4.27.

При уменьшении скорости полета процесс регулирования протекает в обратном порядке. При уменьшении скорости полета угол атаки лопастей увеличивается, а, следовательно, винт делается «тяжелее». Частота вращения при этом снижается, а регулятор, стремясь поддержать заданное значение, переводит лопасти на меньшие углы установки.

Высотная характеристика

Система винт-регулятор будет реагировать и на изменение высоты полета, так как характеристика двигателя и винта по высоте изменяются неодинаково.

Высотная характеристика ТВД N дв =f(h) , представленная на графике рис.4.28, (верхняя ломаная кривая) имеет два характерных излома. На земле мощность двигателя определяется минимальной подачей топлива в двигатель, что соответствует потребной взлетной мощности. В интервале высот (0…h 1) сохранение постоянной мощности (N дв =const) за счет повышения температуры газов перед турбиной до максимально допустимой (увеличение подачи топлива) Т г мах . На высотах от h 1 до h=11км происходит падение мощности двигателя. В этом диапазоне высот уменьшение плотности воздуха атмосферы частично компенсируется возрастанием степени сжатия воздуха в компрессора, связанное с понижением температуры атмосферы (N дв ~ρ (0.8...0.9)) .

На высотах более 11 км, где температура окружающего воздуха постоянна, мощность двигателя снижается пропорционально уменьшению плотности воздуха ρ .

Мощность винта, как следует из рис.4.28 (серия кривых при различных φ), снижается с подъемом на высоту пропорционально изменению плотности воздуха ρ .

Если, предположить, что угол установки лопастей винта φ 0 на земле соответствовал условию N дв. =N в. , то при увеличении высоты полета N дв. >N в . Такое несоответствие N дв. и N в вызывает увеличение частоты вращения, но регулятор, поддерживая заданное ее значение, переводит лопасти винта на большие углы установки.

Таким образом, с увеличением высоты полета до h 1 происходит интенсивное увеличение углов установки лопастей; на высотах (h 1 …11)км углы продолжают возрастать, но с меньшей интенсивностью; на высотах более 11 км угол установки остается постоянным, так как изменение мощностей двигателя и винта одинаково пропорциональны изменению плотности воздуха.

При уменьшении высоты полета процесс изменения угла установки будет обратный, т. е. лопасти винта будут переводиться на меньшие углы установки. Характер изменения угла установки лопасти показан на рис. 4.29.

4.10. АЭРОМЕХАНИЧЕСКИЕ ВИНТЫ

На самолетах с двигателями небольшой мощности применяют аэромеханические винты, у которых лопасти поворачиваются автоматически, без использования посторонних источников энергии и регулятора частота вращения. Таким образом, аэромеханические винты является автономными и автоматическими. Автоматический поворот лопастей достигается за счет изменения в полете величины крутящих моментов, действующих на лопасти винта.

У обычных винтов величина моментов аэродинамических сил невелика, а направление их действия определяется величинами углов атаки. Если лопастям придать специальную форму или изогнуть их на угол γ (рис. 4.30) относительно оси поворота лопасти, то за счет изменения положения центра давления моменты аэродинамических сил будут обеспечивать поворот лопасти во втулке в сторону уменьшения угла установки. На лопасти аэромеханических винтов устанавливаются противовесы, которые создают крутящие моменты, направленные в сторону увеличения угла установки (затяжеление винта).

На лопасти аэромеханических винтов устанавливаются противовесы, которые создают крутящие моменты, направленные в сторону увеличения угла установки (затяжеления винта). Моменты поперечных составляющих центробежных сил лопастей М ц стремятся развернуть лопасти в сторону уменьшения угла установки лопасти. Моменты М ц , создаваемые противовесами, больше моментов, создаваемых поперечными составляющими центробежных сил лопастей. На установившихся режимах соотношение моментов должно обеспечивать условие

М п =М ц +М а.

Однако значения указанных выше моментов в зависимости от режима полета изменяются, поэтому выбор правильного соотношения крутящих моментов, действующих на лопасти винта в широком диапазоне изменения угла установки, является весьма важной и сложной задачей. Это соотношение моментов должно обеспечивать «затяжеления» винта при увеличении скорости полета, и, наоборот, при снижении скорости полета винт должен «облегчаться». Частота вращения при неизменном режиме работы двигателя должна оставаться постоянной.

В соответствии с этим при работе двигателя на месте, когда тяга винта максимальна, а, следовательно, максимален крутящий момент от аэродинамических сил, лопасти винта устанавливаются на упор минимального угла. Этим обеспечиваются получение взлетной (максимальной) частоты вращения ротора двигателя и наивыгоднейшие условия взлета самолета.

В полете, по мере увеличения скорости, тяга винта уменьшается, уменьшаются и моменты М а, а моменты центробежных сил противовесов и лопастей, не зависящие от скорости полета, сохраняют прежние значения (при n =const ). В результате соотношение моментов изменится и лопасти постепенно будут поворачиваться в сторону увеличения угла установки, предотвращая раскрутку винта. Очевидно, при уменьшении скорости полета картина будет обратная. Таким образом, лопасти аэромеханического винта автоматически в зависимости от скорости полета изменяют угол установки. Частота вращения винта при этом меняется, но в сравнительно небольших пределах.

К достоинствам этого типа винтов относятся: простота конструкции и эксплуатации, малые масса и габариты втулки винта, а к недостаткам - снижение заданной частоты вращения по мере подъема самолета, что вызывает снижение мощности двигателя. С подъемом на высоту в связи с уменьшением плотности воздуха тяга винта уменьшается. Это вызывает затяжеление винта и снижение частоты вращения и мощности двигателя. Возн

Изобретение относится к транспортному машиностроению и касается воздушного движителя, выполненного в виде воздушного винта при ограничениях его диаметра, и способа повышения силы тяги и КПД воздушного винта. Способ заключается в том, что выбирают расчетным методом оптимальное число монопланных базовых лопастей винта, обеспечивающих максимальный коэффициент полезного действия (КПД) и соответствующую этому КПД тяговую силу. Определяют разницу между потребной и расчетной силами тяги. Компенсируют полученную разницу тонкостенными полипланными рабочими поверхностями, присоединяемыми к базовым лопастям преимущественно на стороне, обращенной в направлении полета (подъема) при условии непревышения скорости звука окружными скоростями концов базовых лопастей винта и полипланных рабочих поверхностей: D·n max ≤6000, где D - ограниченный (заданный) диаметр сметаемой площади, м; а n max - максимальная скорость вращения воздушного винта, об/мин. Воздушный винт для реализации способа содержит широкие базовые лопасти и симметричные поперечные профили лопастей. Полипланные рабочие поверхности выполнены, например, в виде решетки с набором плоских взаимно перпендикулярных пластин и установлены на базовых лопастях, начиная с конца лопасти. Достигается увеличение силы тяги и повышение КПД воздушного винта. 2 н. и 10 з.п. ф-лы, 1 табл., 6 ил.

Изобретение относится к транспортному машиностроению и касается воздушного движителя, выполненного в виде воздушного винта.

Уровень техники определяется фактически монопланными винтами с ограниченным числом лопастей большого диаметра. Способ повышения силы тяги винта связан с увеличением числа лопастей винта, а повышение КПД достигается уменьшением сопротивления дополнительных аэродинамических несущих (рабочих) поверхностей в воздушной среде в дозвуковом диапазоне скоростей концевых элементов лопастей винта.

Аналогом осуществления указанного способа являются так называемые тандемные винты и решетчатые крылья . Как известно, главным недостатком этих крыльев является более низкое аэродинамическое качество, чем монопланных, на дозвуковых скоростях. Наибольшее практическое значение представляют несущие, стабилизирующие и рулевые решетчатые поверхности .

Описание прототипа и его недостатков

К ближайшим аналогам можно отнести многолопастные винты значительного диаметра самолетов и винтокрылые несущие и подъемные устройства вертолетов, отличающиеся исключительно большими диаметрами и малой поперечной жесткостью. При конструктивных ограничениях на диаметр винта и связанным с этим уменьшением сметаемой площади снижается сила тяги винта (подъемная сила), что является основным недостатком монопланных винтов малого диаметра. Недостатком многолопастных винтов является снижение КПД винта, связанное с возрастанием аэродинамического сопротивления таких винтов в осевом направлении. Снижение КПД винта ведет к увеличению расходов топлива, уменьшению дальности полета, грузоподъемности летательного аппарата и т.п. Недостатком винтокрылых конструкций являются разнородные продольные и поперечные колебания, снижающие безопасность эксплуатации вертолетов, особенно в пересеченной местности и в горных условиях (явление «земного резонанса» и т.п.).

Технической задачей, на решение которой направлен данный способ, является увеличение силы тяги воздушного винта при уменьшении длины его базовых лопастей и повышение его КПД с соответствующей экономией топлива. Увеличение силы тяги и повышение КПД достигается за счет дополнительных полипланных несущих поверхностей, присоединяемых к несущим поверхностям базовых лопастей и обеспечивающих достижение требуемых и, прежде всего, экономичных режимов движения летательного аппарата, например крейсерской скорости полета самолета или скороподъемности вертолета. При этом учитывается, что поглощаемая винтом мощность пропорциональна третьей степени числа оборотов винта и пятой степени диаметра винта. При постоянных значениях числа оборотов, диаметра винта и угла атаки лопастей поглощаемая мощность возрастает приблизительно пропорционально величине отношения развернутой поверхности базовых лопастей винта к величине сметаемой им площади. В результате мощность, поглощаемая винтом, приблизительно пропорциональна числу базовых лопастей винта , если дополнительные полипланные устройства не увеличивают развернутую поверхность базовых лопастей винта. Вместе с тем, задача ограничения диаметра винта возникает на гидросамолетах и некоторых машинах, относящихся к нетрадиционным конструкциям летательных аппаратов, например к аэромобилям, т.е. к транспортным средствам, преобразуемым в летательный аппарат по патенту РФ №2169085 .

Сущность способа повышения силы тяги и КПД многолопастного воздушного винта с ограниченным (заданным) диаметром сметаемой площади винта состоит в том, что расчетным методом выбирают оптимальное число монопланных базовых лопастей винта, обеспечивающих максимальный КПД и соответствующую этому КПД тяговую силу при заданной дозвуковой, например крейсерской скорости полета летательного аппарата, определяют невязку потребной и расчетной сил тяги, компенсируют полученную невязку тонкостенными полипланными несущими (рабочими) поверхностями, присоединяемыми к базовым лопастям преимущественно на стороне, обращенной в направлении полета (подъема) при условии непревышения скорости звука окружными скоростями концов базовых лопастей винта и полипланных несущих поверхностей:

D·n max ≤6000, где D - ограниченный (заданный) диаметр сметаемой площади в м, а n max - максимальная скорость вращения воздушного винта, об/мин. Указанные существенные признаки способа дополняются организацией взаимодействия воздушного винта с силовой установкой (двигателем).

С целью минимизации расхода топлива силовой установкой скорость вращения винта, обеспечивающая крейсерский режим движения полета летательного аппарата, выбирается соответствующей числу оборотов силовой установки при минимальном удельном расходе топлива, с допустимым отклонением на уровне минус 5-10%.

В целях расширения скоростных режимов движения летательного аппарата скорость вращения винта, соответствующая крейсерскому режиму движения полета летательного аппарата, выбирается меньше числа оборотов силовой установки при минимальном удельном расходе топлива с условием, что соответствующий удельный расход топлива силовой установки не будет превышать минимальный удельный расход топлива больше, чем на 5-10%.

В целях расширения скоростных режимов движения летательного аппарата скорость вращения винта, соответствующая режиму движения с максимальной скоростью, выбирается больше числа оборотов силовой установки при минимальном удельном расходе топлива с условием, что соответствующий удельный расход топлива силовой установки не будет превышать минимальный удельный расход топлива больше, чем на 5-10%.

При этом на крейсерском режиме движения полета и при более высоких скоростях, ограниченных максимальным числом оборотов винта по указанной выше гиперболической зависимости от диаметра винта D, существуют близкие к оптимальным соотношения геометрических параметров полипланных несущих поверхностей:

b пп ≤b лв, где b пп и b лв - соответственно хорды планов и базовой лопасти винта; где с - толщина плана; где t - шаг планов; λ пп =l/b пп, где l - длина планов, l=(0,2-0,3)·D; ν=6°-10°, где ν - заострение кромок планов; m≤8, где m - число планов в одной обойме при m≤4, для m=5-8 полипланное устройство может быть размещено по обе стороны базовой лопасти; Н=(m+1)·t, где Н - высота полипланного устройства.

От указанных параметров зависят аэродинамические нагрузки на планы, увеличение силы тяги и КПД.

Приведенные параметры отображены на фиг.1, 2, 3, 5, 6. Следовательно, общее число планов по данному способу где k - число базовых лопастей винта.

Вместе с тем, сущность данного способа, выражаемая связью кинематических характеристик воздушного винта и поглощаемой им мощности с энергетическими характеристиками силового агрегата (двигателя), представляется при некоторых допущениях следующим балансом мощностей:

N т =N e -N в, где N т - мощность силы тяги воздушного винта при заданной скорости полета, Ne - мощность силового агрегата на соответствующем режиме полета и Nв - мощность, поглощаемая воздушным винтом и затрачиваемая на аэродинамическое сопротивление вращению винта. При этом расход топлива силовым агрегатом дается через удельный расход топлива g e (г/л.c. · час): G т =g e ·N e ·10 -3 , где G т - часовой расход топлива (кг/час). Указанные взаимосвязи отображает фиг.4.

Следовательно, отношение N т к сумме N т +N в дает принципиальную возможность определения КПД способа и устройства для его осуществления, причем как расчетным, так и опытным путем. Увеличение в разы силы тяги на базе полипланной конструкции воздушного винта сопровождается и повышением его аэродинамического сопротивления. Однако повышение соответствующей поглощаемой мощности отстает от повышения силы тяги и N т, поэтому КПД имеет тенденцию роста при указанных величинах т, т.е. числа планов в полипланном устройстве воздушного винта.

Таким образом, данный способ повышения силы тяги и КПД воздушного винта определяет более высокий уровень техники в рассматриваемой области, возможность его промышленного производства и использования в разных условиях эксплуатации. Это дает основания для защиты способа в качестве промышленной собственности.

Связь существенных признаков способа с решением технической задачи

Причинами ограничения диаметра воздушного винта могут служить разнородные требования производства и эксплуатационного использования летательного аппарата. В любом случае учет тактико-технических требований и связанный с этим диаметр винта приводят, в случае монопланных лопастей воздушного винта, к уменьшению тяговой или толкающей силы. Это вызывает необходимость увеличивать число воздушных винтов и, соответственно, силовых установок на летательном аппарате для обеспечения потребной скорости полета и скороподъемности. При этом, однако, могут возникать непредвиденные технические противоречия. Например, на гидросамолетах размещение на крыльях винтомоторных агрегатов обусловливает увеличение пикирующего момента от сил тяги, что требует соответствующей компенсации противоположно действующим моментам стабилизатора. Следовательно, наличие упомянутых противоречий влечет за собой дополнительные проблемы технического и экономического характера. В связи с отмеченным, применение полипланных лопастей винта может позволить наиболее просто и рационально решить основную техническую задачу, а именно исключить возникновение технических противоречий. Среди них отметим следующие: наряду с силой тяги обычно возникает проблема КПД, связанная в свою очередь с расходом и запасом топлива на борту летательного аппарата, ограничением грузоподъемности или дальности полета и пр. Исходя из системного подхода к проектированию и созданию конкурентно-способного объекта техники летательного аппарата, приоритетным является совершенство необходимых процессов преобразования энергии с максимальным КПД, который для воздушных винтов зависит от числа его лопастей (k). При увеличении числа лопастей от минимальных 2-3 КПД винта возрастает и достигает максимума при числе k=5-7, а при дальнейшем увеличении k КПД начинает снижаться.

Есть основание, прежде всего, найти число k, соответствующее максимальному КПД, а далее наращивать силу тяги воздушного винта путем увеличения числа тонкостенных несущих (рабочих) пластин полипланных поверхностей на базовых лопастях, не увеличивая таким путем проекцию винта на сметаемую площадь и не увеличивая существенно лобовое сопротивление воздушного винта и летательного аппарата, а также не увеличивая сопротивление воздуха вращению винта.

Таким образом, первые существенные признаки предмета изобретения причинно-следственно связаны с решением поставленной технической задачи способа.

Важнейшими существенными признаками являются признаки тонкостенных полипланных несущих поверхностей, обеспечивающих минимизацию их сопротивления и поглощаемой воздушным винтом энергии, т.е. снижение сопротивления воздушного винта и повышение его КПД. Последняя причинно-следственная связь особо отчетливо проявляется при сравнении данного способа со способом применения тандемных винтов. Этой же цели служит ограничение (недопущение) сверхзвуковых окружных скоростей на концах лопастей винта, выраженное приведенным выше численным условием, ограничивающим максимальное число оборотов винта в гиперболической зависимости от диаметра винта.

Для пояснения и подтверждения приведенных положений рассмотрим результаты проектных расчетов воздушного винта для тяжелого аэромобиля (масса G=3 т). Мощность двигателя по упомянутому выше патенту РФ №2169085 N макс ≤600 л.с. Ограничение диаметра (D) воздушного винта на этом летательном аппарате обусловлено тем, что он не должен превышать габаритной ширины аэромобиля, так как в противном случае аэромобиль не будет сертифицирован для дорожных условий эксплуатации по требованиям к безопасности дорожного движения. По указанной причине диаметр воздушного винта должен быть ограничен (D≤2 м).

Выполним оценку расчетной силы тяги винта (Т р) и его КПД (η) для заданной техническими требованиями крейсерской скорости v=200 км/ч и скорости вращения винта n=2000 об/мин для ряда значений числа базовых лопастей винта k=4-8.

N (л.c.) k Тр (кг) η (%)
400 4 399,0 0,74
6 407,9 0,755
8 405,9 0,752
500 4 491,0 0,727
6 497,5 0,737
8 489,9 0,726
600 4 565,4 0,698
6 581,5 0,718
8 579,0 0,715

Расчеты выполнены А.Н.Кишаловым.

Полученные данные дают основания выбрать расчетное число k=6 лопастям и силу тяги, равную для монопланного винта Т р =581,5 кг. Однако для поддержания крейсерского режима полета при указанном n задана по техническим требованиям сила тяги, равная T т >T p . Следовательно, невязка ΔТ=Т т -Т р ≈Т р ≈0,5 Т т.

Для получения заданного Т т необходима дополнительная площадь полипланных рабочих поверхностей, примерно равная площади базовых лопастей. Распределяя эту площадь на неполной длине монопланных лопастей, получаем рекомендации для дальнейших операций проектного расчета и по изготовлению опытных образцов полипланного устройства воздушного винта. Вместе с тем отметим, что существует резерв повышения силы тяги при увеличении числа оборотов воздушного винта вплоть до n max , обеспечивающих получение соответствующей максимальной скорости. Сопоставляя условие непревышения окружными скоростями на концах лопастей винта скорости звука, можно убедиться, что оно выполнимо: n max =6000·D -1 =3000 об/мин.

Следовательно, проектируемый летательный аппарат имеет запас повышения скорости полета за счет увеличения числа оборотов воздушного винта сверх того, которое обеспечивает крейсерскую скорость полета. По приведенным данным можно убедиться также, что в случае необходимости допустимо пытаться получать более высокую тяговую силу и при более низких числах оборотов винта путем увеличения числа полипланных несущих поверхностей.

Следовательно, применение данного способа представляет также потенциальную возможность уменьшения эксплуатационных расходов топлива, когда заданное число оборотов винта, соответствующее крейсерской скорости n к, не совпадает в определенных пределах с числом оборотов силовой установки, соответствующим минимальным удельным расходам топлива.

Таким образом, данный способ расширяет пределы комплексного повышения эффективности системы «силовая установка - воздушный винт», или короче «двигатель - движитель», повышает тяговую силу Т и КПД, имеет промышленное значение и может быть представлен для патентной защиты промышленной собственности.

Конкретизируем причинно-следственные связи признаков и технических результатов способа.

Возможность повышения КПД обусловлена тем, что повышение силы тяги достигается использованием тонкостенных полипланных несущих поверхностей, обладающих значительно меньшим аэродинамическим сопротивлением, чем базовые лопасти воздушного винта. Поэтому повышение тяговой силы пропорционально увеличению числа полипланных рабочих поверхностей, тогда как воздушное сопротивление винта увеличивается в существенно меньшей пропорции. Это изменяет в желательном направлении баланс мощностей и КПД воздушного винта по следующему выражению:

η=1/,

N т - мощность силы тяги монопланного винта;

N в - мощность поглощаемая монопланным винтом;

ΔT - коэффициент увеличения силы тяги винта с полипланным устройством;

ΔC - коэффициент увеличения сопротивления винта с полипланным устройством;

При этом делается допущение, что известные компоненты обобщенного КПД монопланного винта сохраняют свои значения при оснащении винта полипланным устройством .

Разумеется, необходимо учитывать, что мощность, поглощаемая винтом, пропорциональна третьей степени числа оборотов винта, как было отмечено выше . По этой физической причине вариации числа оборотов винта в значительной мере влияют на вариации поглощаемой винтом мощности. Так, в пределах изменения числа оборотов на 5-10% поглощаемая мощность изменяется на 16-33%. Использование этого явления позволяет получить дополнительные возможности повышения КПД и снижения удельных расходов топлива силовой установкой преимущественно для винта, работающего с постоянным числом оборотов, соответствующим, например, минимальному удельному расходу топлива

Таким образом, представленный способ повышения силы тяги и КПД воздушного винта с учетом особенностей скоростных характеристик силовой установки и характеристик расходов топлива открывает дополнительные возможности повышения эффективности системы двигатель-движитель.

Для реализации представленного способа повышения силы тяги и КПД требуется устройство воздушного винта преимущественно с широкими базовыми лопастями и симметричным поперечным профилем лопастей. С целью снижения поглощаемой мощности и повышения эффективности полипланных несущих (рабочих) поверхностей они выполняются, например, в виде решетки с набором плоских взаимно перпендикулярных пластин и устанавливаются на ограниченной длине базовых лопастей, начиная с конца лопасти. Базовые лопасти выполняются с переменной толщиной, не превышающей от конца до конца (т.е. от комля до конца) 10% длины хорды лопасти, суммарная толщина дополнительных планов не превышает 1/3 толщины базовой лопасти, а толщина пластин планов и расстояние между ними должны относиться к хорде b пп, как указано выше, т.е. a причем передние и задние кромки дополнительных планов выполняются заостренными.

При этом уровень техники повышается вследствие учета кругового движения полипланного устройства. Пластины, соединяющие полипланные несущие (рабочие) поверхности, выполнены цилиндрическими с радиусами цилиндрических поверхностей, равными расстояниям этих пластин от центра вращения винта, а образующие цилиндрических поверхностей наклонены от нормали к плоскости симметрии базовой лопасти на средний угол атаки базовых лопастей, устанавливаемый на крейсерском режиме полета, причем наклон образующих цилиндрических поверхностей выполняется в направлении вращения винта (навстречу повороту лопасти), в результате эти образующие оказываются параллельными оси вращения винта.

С целью обеспечения коротких пробегов при взлете и посадке летательного аппарата планы полипланного устройства устанавливаются с собственными углами атаки при нейтральном положении базовой лопасти.

С целью повышения эффективности полипланного устройства на всех стадиях полета от старта до посадки планы выполняются профилированными вдоль базовой лопасти на расстоянии 30-50% хорды от передней кромки плана с отгибом пластины плана на угол γ, причем с возможностью увеличения угла отгиба в направлении к оси вращения винта в соответствии с зависимостью угла от длины плана l п и расстояния от конца базовой лопасти l i по выражению:

tgγ i =(l+l i /l n)tgγ o , где γ o - начальный угол отгиба плана, образуемый с плоскостью асимметричного поперечного сечения базовой лопасти и определяемый у конца базовой лопасти (см. фиг.5 и 6).

С целью повышения жесткости планов в продольном и поперечном направлениях и снижения уровня шума преимущественно для несимметричного профиля базовой лопасти планы выполняются криволинейно-гофрированными, причем радиусы кривизны изменяются вдоль базовой лопасти и равны расстояниям вершины каждого отдельного гофра до центра вращения винта.

С целью обеспечения жесткости и прочности, уменьшения вибраций и уровня шума неразборное соединение планов между собой и базовой лопастью выполняется преимущественно высокотемпературной пайкой, причем с аморфизацией слоев припоя, например резким глубоким охлаждением.

Вместе с тем, с целью обеспечения ремонтопригодности и повышения приспособленности к различным условиям эксплуатации винт оснащается съемными с базовых лопастей сменными (модульными) полипланными устройствами, различающимися по степени увеличения силы тяги, например для равнинных и высокогорных условий. Данное обстоятельство является важным как для разработанного для патентования способа, так и устройства для его реализации.

Учитывая возможность использования данного способа и устройства в различных климатических и погодных условиях, с целью борьбы с обледенением винт оснащается противообледенительным устройством.

Описание устройства в статике.

На фиг.1, 2, 5 и 6 показана структура базовой лопасти воздушного винта с полипланным устройством, которое служит для повышения силы тяги и КПД. На фиг.1 обозначены следующие структурные элементы устройства: 1 - базовая лопасть с осью вращения 2, 3 - пластина плана, 4 - крышка обоймы планов, 5 - соединительные пластины планов.

Базовая лопасть на указанных фигурах воздушного винта представлена в нейтральном положении при отсутствии угла атаки (α=0). Установленное на базовой лопасти полистанное устройство содержит пластины планов с дополнительными рабочими поверхностями, которые увеличивают общую аэродинамическую несущую поверхность с базовой лопастью. Размещение полипланного устройства, начиная от конца базовой лопасти, повышает его эффективность как в статике, так и в динамике. В статике полипланное устройство снижает массу данного устройства в сравнении с монопланным устройством воздушного винта большего диаметра. Это преимущество особенно наглядно проявляется на винтокрылых машинах и, что очень важно, за счет укорочения лопастей повышается безопасность вертолетов в условиях эксплуатации в пересеченной местности при полетах на малой высоте, маневрировании и т.п.

Вместе с тем, полипланное устройство увеличивает продольную и поперечную жесткость базовой лопасти, что позволяет уменьшить ее толщину, а в динамике увеличивает силу тяги при минимизации общей массы полипланного устройства и базовой лопасти. Фактически полипланное устройство образует совместно с базовой лопастью строительную конструкцию типа фермы, что соответственно резко увеличивает собственные частоты колебаний лопасти, снижает амплитуды колебаний и внутренние напряжения в материалах конструкции. Тем самым повышается усталостная прочность воздушного винта.

Увеличение эффективной площади полипланного устройства может осуществляться как с одной стороны (фиг.1 и 5), так и с обеих сторон (фиг.6) базовой лопасти воздушного винта, начиная с конца и заканчивая на длине 0,5-0,7 длины базовой лопасти для уменьшения концентрации напряжений от действия двухсторонних однонаправленных нагрузок.

Симметричный профиль относительно хорды лопастей (фиг.5а и 6а) предпочтительней, чем асимметричный (фиг.5,б и 6,б).

Технология изготовления решетчатых крыльев по данным представляет неразборные конструкции полипланных устройств, учитывая их одноразовое употребление в большинстве случаев (например, в ракетостроении). Для летательного аппарата многоразового использования характерно, наоборот, длительное многоразовое использование, которое обусловливает интерес к разборным конструкциям, например, должна учитываться не только ремонтопригодность, но и возможность использования различных по мощности полипланных устройств, учитывающих различные эксплуатационные условия и требования к полипланным воздушным винтам. Так, например, для равнинных и высокогорных условий полипланные устройства могут различаться числом и размерами планов, чтобы обеспечивать наибольшую эффективность летательного аппарата, требования экономии топлива и т.п.

Следовательно, на едином базовом воздушном винте могут быть использованы разные полипланные модули, выполняемые съемными и сменяемыми.

Таким образом, в разработках и НИОКР должны быть представлены разные конструкции полипланных воздушных винтов. Это обстоятельство должно найти отражение и в патентной защите данного способа и устройства для его осуществления.

Применение решетчатых крыльев для кругового движения лопастей воздушного винта усложняет задачу обеспечения минимального сопротивления воздуха полипланной конструкции. Дело в том, что при прямолинейном движении пластины планов могут быть плоскими и взаимно перпендикулярными. Для воздушного винта соединительные пластины, установленные перпендикулярно к лопасти винта, плоскими быть не могут, т.к. они в этом случае будут увеличивать воздушное сопротивление вращению винта (т.е. будут «загребать» воздух, сообщать ему движение вдоль лопасти, усиливая турбулизацию в зоне полипланных несущих поверхностей).

Для исключения этого неблагоприятного явления пластины, соединяющие полипланные поверхности, должны выполняться профилированными, а именно

цилиндрическими, с радиусами кривизны R 1 , R 2 ,…R n , равными расстояниям этих пластин от центра вращения винта (фиг.2). При таком выполнении пластин, соединяющих планы, они будут оказывать минимальное сопротивление вращению воздушного винта.

Кроме того, эти же пластины должны учитывать поворот базовых лопастей винта на угол атаки для создания силы тяги (подъема). Решение этой задачи следует искать для винтов с переменными углами атаки лопастей с учетом продолжительности работы воздушного винта с тем или иным углом атаки. В большинстве случаев наиболее правильным будет ориентировка на угол атаки, соответствующий крейсерскому режиму полета летательного аппарата. Учет угла атаки базовой лопасти в формообразовании соединительных пластин должен обеспечивать параллельность образующей цилиндрической поверхности оси вращения воздушного винта. Тогда будет обеспечена минимизация воздушного сопротивления этих пластин при круговом движении (в пределах сметаемого воздушным винтом круга).

Таким образом, в конечном итоге соединительные пластины полипланного устройства будут представлять косой срез цилиндрической поверхности, т.е. фактически отрезок эллиптической поверхности. Это обстоятельство необходимо учитывать, начиная с изготовления самых первых опытных образцов воздушного винта по данному способу. По сути, данные уточнения относятся к «ноу-хау» способа повышения силы тяги и КПД воздушного винта, а также устройства для его осуществления.

Наряду со спецификой формообразования соединительных пластин необходимо учитывать условия повышения эффективности несущих поверхностей планов во взаимодействии с базовыми лопастями.

Эти условия сопряжены с тремя ограничениями: первое - расстояние от базовой лопасти до следующей несущей поверхности плана зависит главным образом от толщины пластин плана, их отношение должно составлять порядка 1:10 (оптимум); второе - угол атаки плана β i должен быть больше угла атаки базовой лопасти α на несколько градусов (1°-5°), фиг.5 и 6; третье - то же самое может относиться к углам атаки следующих планов, т.е. β i -β i-1 =1°-5°.

Последнее ограничение может быть также связано с учетом разницы окружных скоростей на конце лопасти воздушного винта и в средней части лопасти, в зоне которой рекомендуется заканчивать полипланное устройство, где упомянутое соотношение 1:10 снижается до 1:8.

Теория и практика использования полипланных устройств решетчатых крыльев показывает , что чем тоньше планы, тем меньше требуется расстояние между ними, чтобы получить необходимую подъемную силу (или управляющую). Ограничением является прочность и жесткость планов, а также технологические проблемы надежности соединений, выполненных паяльным способом. При этом побочным негативным эффектом является расширение спектра звуковых явлений при уменьшении жесткости тонких планов.

Использование вместо плоских пластин планов гофрированных пластин с впадинами и выступами, соизмеримыми с толщиной планов, целесообразно, т.к. это резко увеличивает жесткость планов. Это можно оценить методами теории упругости, определяя так называемую цилиндрическую жесткость гофрированных пластин.

От применения гофров можно ожидать также и положительного аэродинамического эффекта: ламинаризации прилегающих слоев потока воздуха вдоль гофра, задержки отрыва потока от поверхности плана при нестационарности потока и увеличении его скорости.

Отмеченные признаки и особенности гофрированных пластин позволяют несколько увеличить углы атаки планов.

Следовательно, учет разнородных явлений, связанных с работой полипланного устройства, позволяет совершенствовать и повышать эффективность устройства воздушного винта, т.е движителя летательного аппарата.

Таким образом, данный способ повышения силы тяги и КПД осуществим представленным устройством воздушного винта для разнообразных условий эксплуатации самолетов, вертолетов, аэромобилей и др. объектов авиационной техники.

Работа устройства полипланного воздушного винта рассматривается при автоматическом регулировании числа оборотов, обеспечивающим наиболее экономичное использование всей мощности двигателя при различных режимах полета. Вместе с тем рассматриваются условия работы полипланного воздушного винта с позиций удовлетворения требований короткого взлета и посадки, минимизации моментов инерции и гироскопических моментов при управлении вектором тяги винта .

Известно, что винты с автоматическим регулированием оптимизируют условия взлета и набора высоты, повышают предел достижимой скорости. Это поясняется в системе «двигатель-движитель» на фиг.4. Кроме того, необходимо принимать во внимание, что воздушные винты с автоматическим регулированием повышают управляемость транспортного средства, преобразуемого в летательный аппарат , при движении в дорожных и внедорожных условиях, на крутых подъемах, особенно при использовании управления вектором тяги.

Однако, учитывая приоритетные требования высокой топливной экономичности и повышения КПД, в основном работа полипланного устройства винта рассматривается при постоянных оборотах в области А (фиг.4), соответствующей наибольшим КПД и экономии топлива при крейсерском режиме полета. Данное положение сохраняет свою силу и при постановке и решении задачи короткого взлета и посадки летательного аппарата. Вместе с тем, при решении задачи короткого взлета работа воздушного винта с полипланным устройством может рассматриваться в зоне более высоких чисел оборотов, ограниченной внешней характеристикой двигателя и зоной В (фиг.4) поглощаемой мощности винта, т.е. при (Ne-Nв)≥Nт.

При постановке задачи обеспечения короткого взлета и посадки (при взаимодействии с колесными тормозами шасси) пробег до остановки летательного аппарата может быть сокращен почти вдвое. При этом сила торможения, развиваемая винтом, может превышать силу тяги. Соответственно возрастает и поглощаемая винтом мощность. Комплексное совершенствование тяговых и толкающих характеристик воздушного винта с полипланным устройством легче достигается при двухстороннем размещении полипланного устройства, т.е. с обеих сторон базовой лопасти (фиг.6). В тех случаях, когда необходима компенсация гироскопических моментов воздушного винта при управлении, например, вектором тяги , целесообразно использование двух противоположно вращающихся винтев, что ограничивает условия размещения полипланных устройств. Для преодоления этого технического противоречия могут быть использованы профилированные пластины планов, что схематично отражают фиг.5,б и 6,б.

Таким образом, полипланное устройство наряду с повышением тяговых характеристик воздушного винта ограниченного диаметра расширяет возможности совершенствования и других важных функциональных и эксплуатационных свойств летательного аппарата. При этом работа полипланного устройства сопряжена с меньшим сопротивлением вращению винта, т.е. обусловливает меньшую поглощаемую мощность винта, что повышает его КПД.

Рассмотрим подробнее работу базовой лопасти с двухсторонним и симметричным расположением полипланного устройства (верхнего и нижнего, фиг.6а). В этом случае при α=0 и вращении винта при углах атаки верхних β i и нижних β j планов возникают практически уравновешенные разнонаправленные силы Т i и T j . При увеличении подачи топлива в двигатель и росте числа оборотов автоматическое регулирование обеспечивает поворот базовой лопасти на угол α и вместе с этим выводит все полипланное устройство на положительные углы атаки и, соответственно, на однонаправленные силы Т. Суммарная сила тяги базовой лопасти и планов быстро нарастает, в результате взлет ускоряется и укорачивается. При приземлении все происходит в обратном порядке. После прохождения нейтрального положения (α=0) базовой лопасти и планов полипланного устройства возникают отрицательные углы атаки и отрицательно направленные силы Т, т.е. тормозные силы. Тем самым процесс торможения интенсифицируется, и путь остановки укорачивается в два-три раза по сравнению с торможением только колесными тормозами.

Сложность течения воздуха в полипланном устройстве имеет своими следствиями, по меньшей мере, три эффекта: 1 - возможность повышения силы тяги воздушного винта и его КПД; 2 - возможность создания тормозной силы воздушным винтом при изменении направления его вращения при неизменном угле атаки базовой лопасти, или при неизменном направлении вращения, но с изменением угла атаки базовой лопасти с положительного на отрицательное, и 3 - возможность обледенения воздушного винта и полипланного устройства вследствие эффекта Джоуля-Томпсона.

Если первые два эффекта должны быть отнесены к положительным результатам данного способа и устройства, то третье явление требует мер по борьбе с обледенением, главным образом, при повышенной влажности воздуха и относительно низких температурах, например в горных и высотных условиях эксплуатации летательного аппарата. Последнее требует, однако, экспериментальной проверки, т.к. неизбежные вибрации элементов конструкции полипланного устройства могут оказывать разрушительное действие на ледяное покрытие (корку) на тонколистовых планах. Увеличение силы тяги и КПД, а также возможности укорочения в несколько раз пробегов при взлете и посадке летательного аппарата на основе данного способа и устройства следует отнести к более высокому уровню авиационной техники и необходимости защиты промышленной собственности.

ЛИТЕРАТУРА

1. Белоцерковский С.М., Фролов В.П. и др. Решетчатые крылья. - М.: Машиностроение, 1985. 320 с.

2. Морозов О.А., Белоцерковский С.М., Фролов В.П. и др. Весло. Авт. свид. №1512859 СССР, МКИ В63Н 16/04,1987, Б.И. №37, 1989.

3. Гошек И. Аэродинамика больших скоростей. - М.: Изд-во иностр. лит., 1954. 547 с.

4. Петраков В.М., Фролов В.П., Ципенко В.Г. Полифюзеляжный самолет. Авт. свид. №2111896 РФ, МКИ В64С 35/00.

5. Луканин В.Н., Дербаремдикер А.Д. Патент РФ №2169085, МПК B60F 5/02, 1999, Б.И. №17, 2001.

6. Белоцерковский С.М., Камнев П.И. и др. Решетчатые крылья в ракетостроении, космонавтике, авиации. / Под ред. Белоцерковского С.М., Фролова В.П., Подобедова В.А., Плаунова В.П. - М.: Новый Центр, 2007. 407 с.

7. Курочкин Ф.П. Проектирование и конструирование самолетов с вертикальным взлетом и посадкой. - М.: Машиностроение, 1977. 223 с.

Перечень чертежей

Фиг.1. Конструктивная схема лопасти воздушного винта с полипланным устройством на конце лопасти: 1 - базовая лопасть винта; 2 - ось вращения воздушного винта и направление действия силы тяги Т; 3 - пластина плана; 4 - крышка обоймы планов; 5 - соединительные пластины планов; D - диаметр воздушного винта; 1 и Н - соответственно длина и высота полипланного устройства.

Фиг.2. Вид на базовую лопасть с полипланным устройством по оси вращения винта: 6 - гофрированная поверхность крышки обоймы планов и радиусы кривизны R 1 и R 5 торцовых стенок обоймы планов и соединяющих стоек планов R 2 , R 3 , R 4 ; b - ширина лопасти (хорда). Обозначения 1-5 приведены на фиг.1.

Фиг.3. Типы полипланных устройств: а - рамное; б - сотовое; в - комбинированное.

Фиг.4. Пример внешней скоростной характеристики мощности поршневого двигателя внутреннего сгорания летательного аппарата с характеристикой удельных расходов топлива и схема согласования оптимальных режимов работы системы двигатель-движитель и минимизации расходов топлива при повышенном КПД воздушного винта: Ne - мощность двигателя в зависимости от скорости вращения коленчатого вала (n); g e - характеристика удельных расходов топлива;

А - зона экономичной работы воздушного винта на крейсерском режиме полета летательного аппарата; В - область характеристик поглощаемой воздушным винтом мощности в зависимости от скорости вращения коленчатого вала двигателя.

Фиг.5. Конструктивные схемы односторонней установки полипланного устройства на лопастях: а - лопасти с симметричным поперечным сечением и б - с несимметричным поперечным сечением: 1 - базовая лопасть; 7 - центр оси поворота базовой лопасти на угол атаки лопасти: +α при взлете и полете и -α при посадке и торможении после касания опорной поверхности при неизменном направлении вращения; 3 - планы полипланного устройства, обращенные в сторону полета (подъема) и установленные под собственными углами атаки β i и β m к горизонтали; 8 - направление вращения винта (см. фиг.1); Т л - сила тяги отдельной лопасти винта. Обозначения 1-3 приведены на фиг.1.

Фиг.6. Конструктивные схемы двухсторонней установки полипланного устройства на базовых лопастях воздушного винта: а и б - соответственно с симметричным и несимметричным поперечным сечением лопастей; 1-7 то же, что на фиг.1 и 5; 9 - планы полипланного устройства, установленные с противоположной стороны лопасти под углами и

1. Способ повышения силы тяги и КПД многолопастного воздушного винта с ограниченным заданным диаметром сметаемой площади винта, заключающийся в том, что выбирают расчетным методом оптимальное число монопланных базовых лопастей винта, обеспечивающих максимальный КПД и соответствующую этому КПД тяговую силу при заданной дозвуковой, например крейсерской скорости полета летательного аппарата, определяют разницу между потребной и расчетной силами тяги, компенсируют полученную разницу тонкостенными полипланными несущими (рабочими) поверхностями, присоединяемыми к базовым лопастям преимущественно на стороне, обращенной в направлении полета (подъема) при условии непревышения скорости звука окружными скоростями концов базовых лопастей винта и полипланных несущих поверхностей: D·n max ≤6000;
где D - ограниченный (заданный) диаметр сметаемой площади, м,
а n max - максимальная скорость вращения воздушного винта, об/мин.

2. Способ по п.1, отличающийся тем, что скорость вращения винта, обеспечивающая крейсерский режим движения летательного аппарата, выбирается соответствующей числу оборотов силовой установки при минимальном удельном расходе топлива с допустимым отклонением на уровне минус 5-10%.

3. Способ по п.1, отличающийся тем, что скорость вращения винта, соответствующая крейсерскому режиму движения летательного аппарата, выбирается меньше числа оборотов силовой установки при минимальном удельном расходе топлива с условием, что соответствующий удельный расход топлива силовой установки не будет превышать минимальный удельный расход топлива больше, чем на 5-10%.

4. Способ по п.1, отличающийся тем, что скорость вращения винта, соответствующая режиму движения с максимальной скоростью, выбирается больше числа оборотов силовой установки при минимальном удельном расходе топлива с условием, что соответствующий удельный расход топлива силовой установки не будет превышать минимальный удельный расход топлива больше, чем на 5-10%.

5. Воздушный винт для реализации способа по любому из пп.1-4, преимущественно с широкими базовыми лопастями и симметричным поперечным профилем лопастей, отличающийся тем, что полипланные несущие (рабочие) поверхности выполняются, например, в виде решетки с набором плоских взаимно перпендикулярных пластин и устанавливаются на ограниченной длине базовых лопастей, начиная с конца лопасти, при этом базовые лопасти выполняются с переменной толщиной, не превышающей от конца до комля 10% длины хорды лопасти, суммарная толщина дополнительных планов не превышает 1/3 толщины базовой лопасти, а толщина пластин планов и расстояния между ними должны относиться как: 1:(90±10), причем передние и задние кромки дополнительных планов выполняются заостренными.

6. Воздушный винт по п.5, отличающийся тем, что пластины, соединяющие полипланные несущие (рабочие) поверхности, выполнены с радиусами цилиндрических поверхностей, равными расстояниям этих пластин от центра вращения винта, а образующие цилиндрических поверхностей наклонены от нормали к плоскости симметрии базовой лопасти на средний угол атаки базовых лопастей, устанавливаемый на крейсерском режиме полета, причем наклон образующих цилиндрических поверхностей выполняется в направлении вращения винта (навстречу повороту лопасти), в результате эти образующие оказываются параллельными оси вращения винта.

7. Воздушный винт по п.5, отличающийся тем, что планы полипланного устройства устанавливаются с собственными углами атаки при нейтральном положении базовой лопасти.

8. Воздушный винт по п.7, отличающийся тем, что планы выполняются профилированными вдоль базовой лопасти на расстоянии 30-50% хорды от передней кромки плана с отгибом пластины плана на угол γ, причем с возможностью увеличения угла отгиба в направлении к оси вращения винта в соответствии с зависимостью угла от длины l n плана и расстояния l i от конца базовой лопасти по выражению: tgγ i =(l+l i /l n)·tgγ o , где γ о - начальный угол отгиба плана, образуемый с плоскостью асимметричного поперечного сечения базовой лопасти и определяемый у конца базовой лопасти.

9. Воздушный винт по п.8, отличающийся тем, что планы выполняются криволинейно гофрированными, причем радиусы кривизны изменяются вдоль базовой лопасти и равны расстояниям вершины каждого отдельного гофра до центра вращения винта.

Понравилась статья? Поделитесь ей