Контакты

Передача и распределение электроэнергии презентация. Презентация по физике на тему «Производство, передача и использование электрической энергии» скачать бесплатно. Действие трансформатора основано на

Презентация по слайдам

Текст слайда: Производство, передача и использование электрической энергии. Разработал: Н.В.Грузинцева. г. Красноярск


Текст слайда: Цель проекта: Понимание производства, передачи и использования электрической энергии. Задачи проекта, рассмотреть: Генерирование электрической энергии. Трансформаторы. Производство и использование электрической энергии. Передача электроэнергии. Эффективное использование электроэнергии.


Текст слайда: Вступление: Электрический ток вырабатывается в генераторах-устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся: Гальванические элементы. Электростатические батареи. Термобатареи. Солнечные батареи. и т. п.


Текст слайда: Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, то говорят, что они обладают энергией. Энергия – физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергию выражают в системе СИ в тех же единицах, что и работу, т.е. в джоулях.


Текст слайда: Преобладают электромеханические индукционные генераторы переменного тока. Механическая энергия Электрическая энергия Для получения большого магнитного потока в генераторах применяют специальную магнитную систему состоящую из: Статор; Генератор; Кольца; Турбина; Корпус; Ротор; Щётки; Возбудитель.


Текст слайда: Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов. Устройство трансформатора: Замкнутый стальной сердечник, собранный из пластин; Две (иногда более) катушки с проволочными обмотками. первичная, вторичная, применяемая к источнику к ней присоединяют переменного напряжения. нагрузку, т.е. приборы и устройства, потребляющие электроэнергию.


Текст слайда: Источник энергии на ТЭС: уголь, газ, нефть, мазут, горючие сланцы, угольная пыль. Дают 40% электроэнергии. Внутренняя Энергия проводов ТЭС ПОТРЕБИТЕЛЬ


Текст слайда: На ГЭС для вращения роторов генераторов используется потенциальная энергия воды. Дают 20% электроэнергии. ГЭС ПОТРЕБИТЕЛЬ Внутренняя энергия проводов


Текст слайда: промышленность транспорт производственные и бытовые нужды механическая энергия ЭЛЕКТРОЭНЕРГИЯ

Слайд №10


Текст слайда: Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образующие общую электрическую цепь, к которой присоединены потребители. Такое объединение называется энергосистемой. Передача электроэнергии. заметные потери Потребитель трансформатор напряжение понижается; трансформатор напряжение увеличивается; сила тока уменьшается.

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Слайд 10

Презентацию на тему "Производство и передача электроэнергии" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Слайд 1

Слайд 2

Слайд 3

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.

Слайд 4

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Слайд 5

Использование электроэнергии.

Удвоение потребления электроэнергии происходит за 10 лет

Слайд 6

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Слайд 7

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла "магнитная сила". Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность. Крупным потребителем является также транспорт. Всё большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд.

Слайд 8

Передача и распределение электроэнергии

1 % потерь электроэнергии в сутки- 0,5 млн.руб.убытка Для уменьшения тепловых потерь в линиях электропередачи (ЛЭП) можно увеличить сечение проводников S, что экономически невыгодно, либо уменьшить силу тока I. Чтобы передаваемая мощность p = IU осталось неизменной при уменьшении силы тока, необходимо увеличить напряжение U в ЛЭП (U-500 Кв.;750 Кв.; 1150 Кв.;- ЛЭП)

Производство, передача и потребление электроэнергии


Типы электростанций

  • Тепловые (ТЭС) - 50 %
  • Гидроэлектростанции (ГЭС) - 20-25%
  • Атомные (АЭС) - 15 %
  • Альтернативные источники

энергии- 2 – 5 % (солнечная энергия, энергия термоядерного синтеза, приливная энергетика, ветроэнергетика)


Генератор

Тепловые электростанции

Внутренняя

Энергия

(энергия топлива)

Механическая

энергия

ТД (паровая

Электрическая

энергия


Генератор

Гидроэлектростанции

Механическая

энергия

(падающей воды)

Электрическая

энергия


Генератор

Атомные электростанции

Атомная энергия

(при делении

атомных ядер)

Механическая

энергия

Электрическая

энергия


Генератор электрического тока

  • Генератор преобразует механическую энергию в электрическую
  • Действие генератора основано на явлении электромагнитной индукции

Рамка с током – основной элемент генератора

  • Вращающаяся часть называется РОТОРОМ (магнит).
  • Неподвижная часть называется СТАТОРОМ (рамка)

При вращении рамки, пронизывающий рамку, магнитный поток изменяется во времени, вследствие чего в рамке возникает индукционный ток


Передача электроэнергии

  • Для передачи электроэнергии потребителям используют линии электропередач (ЛЭП).
  • При передаче электроэнергии на расстояние происходят её потери за счёт нагревания проводов (закон Джоуля - Ленца).
  • Способы уменьшения тепловых потерь:

1) Уменьшение сопротивления проводов, но увеличение их диаметра (тяжелы – трудно подвешивать, и дорогостоящи – медь).

2) Уменьшение силы тока путём повышения напряжения.




Трансформатор

  • Состоит из двух катушек изолированного провода, намотанных на общий стальной сердечник.

Действие трансформатора основано на

явлении электромагнитной индукции


Схема трансформатора

Первичная обмотка – катушка, на которую подают переменный ток одного напряжения

Вторичная обмотка – катушка, с которой снимают переменный ток другого напряжения



Повышающий трансформатор - трансформатор, увеличивающий напряжение.


Понижающий трансформатор - трансформатор, уменьшающий напряжение.


Влияние тепловых электростанций на окружающую среду


Основные этапы производства, передачи и потребления электроэнергии

  • 1.Механическую энергию преобразуют в электрическую с помощью генераторов на электростанциях.
  • 2. Электрическое напряжение повышают для передачи электроэнергии на большие расстояния.
  • 3. Электроэнергию передают под высоким напряжением по высоковольтным линиям электропередач.
  • 4. При распределении электроэнергии потребителям электрическое напряжение понижают.
  • 5. При потреблении электроэнергии её преобразуют в другие виды энергии – механическую, световую или внутреннюю.

Использование электроэнергии Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу.






Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.). Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.


Передача электроэнергии Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.


Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой где R – сопротивление линии.




Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие кВ.


Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.





В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солн ечные батареи, малые газогенераторы






Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света. Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света.


Преимущество электрической энергии Можно передавать по проводам Можно передавать по проводам Можно трансформировать Можно трансформировать Легко превращается в другие виды энергии Легко превращается в другие виды энергии Легко получается из других видов энергии Легко получается из других видов энергии


Генератор - Устройство, преобразующее энергию того или иного вида в электрическую энергию. Устройство, преобразующее энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи




Эксплуатация генератора Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным). Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным).




Значение генератора в производстве электрической энергии Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично




Как устроен трансформатор? Он состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две катушки с проволочными обмотками. Первичная обмотка подключается к источнику переменного напряжения. К вторичной обмотке присоединяют нагрузку.











АЭС производят 17% мировой выработки. Начало ХХI века эксплуатируется 250 АЭС, работают 440 энергоблоков. Больше всего США, Франции, Японии, ФРГ, России, Канаде. Урановый концентрат (U3O8) сосредоточен в следующих странах: Канаде, Австралии, Намибии, США, России. Атомные электростанции


Сравнение типов электростанции Типы электростанц ий Выбросвредных веществ в атмосфе ры, кг Занимае мая площадьга Потребле ние чистой воды м 3 Сбро с грязн ой воды, м 3 Затрат ы наохрану приро ды % ТЭЦ: уголь 251,5600,530 ТЭЦ: мазут 150,8350,210 ГЭС АЭС--900,550 ВЭС10--1 СЭС-2--- БЭС10-200,210







Понравилась статья? Поделитесь ей