Контакты

Профиль крыла самолета схемы утка. Аэродинамическая схема «утка. Почему переднее горизонтальное оперение


САМОЛЕТЫ СХЕМЫ "УТКА"

Так как первый взлетевший летательный аппарат тяжелее воздуха-самолет братьев Райт "Флайер" (1903 год) - построен по схеме, которая сегодня известна под названием "утка", представляется логичным начать повествование о летательных аппаратах нетрадиционных схем с самолетов этого класса.

ОШИБОЧНЫЙ ТЕРМИН

Во-первых, термин "утка" - ошибочный. Под "уткой" в авиации общепринято понимать самолет, горизонтальное оперение которого-стабилизатор и рули высоты-расположено перед крылом, а не позади него. Этот термин может быть с таким же успехом применен и к дирижаблям, и к планерам. В частности, первые модели жестких дирижаблей Цеппелина оснащались расположенными впереди горизонтальными поверхностями управления в дополнение к традиционным хвостовым.

Обычно термин "утка" подразумевает расположение в передней части летательного аппарата основных, а не вспомогательных средств аэродинамического управления.

Этот термин появился впервые во Франции; его происхождение, вероятно, связано с тем, что крыло летящей утки находится ближе к ее хвосту, чем к голове, а вовсе не потому, что эта птица управляет своим полетом с помощью специального органа, расположенного перед крылом. Летательные аппараты этой схемы получили довольно широкое распространение.

Многие самолеты схемы "утка" можно рассматривать как самолеты с тандемными крыльями, переднее крыло которых относительно мало. В этом случае переднее горизонтальное оперение (ПГО), состоящее обычно из неподвижных (стабилизаторы) и подвижных (рули высоты) поверхностей, несет значительную часть аэродинамической нагрузки.

В последние годы термин "утка" стал применяться для описания самолетов, оснащенных вспомогательными поверхностями аэродинамического управления, установленными на носовой части, вообще говоря, самолетов довольно традиционных схем (а также некоторых самолетов с треугольным крылом), для обеспечения балансировки летательного аппарата или управления обтекающим его потоком, а не для осуществления основного управления или создания части суммарной подъемной силы, как это бывает на классической "утке".

ПОЧЕМУ ПЕРЕДНЕЕ ГОРИЗОНТАЛЬНОЕ ОПЕРЕНИЕ?

До того, как братья Райт непосредственно приступили к созданию самолета, они
Во-первых, братья Райт прекрасно понимали функции "горизонтального руля" при управлении положением самолета в пространстве и считали, что расположенное впереди оперение будет выполнять такие функции более эффективно, чем хвостовое. В этом они оказались правы, но недостатков такого технического решения они, конечно же, не знали.

Второй основной причиной их выбора было место проведения первых полетов, которые выполнялись с песчаной площадки, и поэтому отсутствовала возможность использования шасси колесного типа. И созданные ранее планеры, и первый "Флайер" оснащались полозковым шасси, при котором фюзеляж самолета располагался очень близко к земле. В то же время братья Райт понимали необходимость большого угла атаки при взлете и посадке. Низкосидящая машина типа "Флайера" наверняка цепляла бы хвостовым оперением за землю, если бы оно было выбрано; поэтому конструкторы отказались от такого решения. Они установили в хвостовой части своего летательного аппарата вертикальный киль. Балки, поддерживающие киль, оснащались шарнирами и с помощью тросовой проводки могли отклоняться вверх, не оказывая влияния на управляемость самолета, так как киль не отклонялся относительно набегающего потока.

ДОСТОИНСТВА

В современном понимании главным преимуществом аэродинамической схемы "утка" считается повышение маневренности самолета, что привлекает к этой схеме создателей военной техники. Более высокие маневренные качества самолетов такой схемы оказались очень полезными в совершенствовании характеристик некоторых из созданных в последнее время ультралегких летательных аппаратов.

Еще одним преимуществом самолетов: схемы "утка" считается то, что практически всегда можно построить такой летательный аппарат с естественной противоштопорной защитой: срыв воздушного потока на ПГО происходит раньше, чем на крыле, создающем большую часть подъемной силы, поэтому нос самолета в этом случае слегка опускается, и машина возвращается в нормальный полет.

НЕДОСТАТКИ

Существенным недостатком чсхемы "утка" является то, что летательным аппаратам этой схемы присуща продольная неустойчивость. Вместо того чтобы демпфировать движения самолета относительно поперечной оси (по тангажу), как это делает, например, оперение стрелы, воздействие воздушного потока на переднее горизонтальное оперение усиливает соответствующие возмущения.

В своих записках О. Райт отмечал, что устойчивость "утки" по тангажу определяется мастерством летчика. Опыт первых полетов показал, что в том случае, когда на переднем горизонтальном оперении создается значительная подъемная сила, она оказывает существенное влияние на балансировку самолета.

Срыв потока на ПГО вызывает примерно такое же воздействие на балансировку летательного аппарата, как, например, складывание пары ножек стола-две другие ножки продолжают поддерживать противоположный конец, и стол падает в ту сторону, где опора отсутствует.

Поэтому противоштопорные достоинства самолетов схемы "утка" довольно скоро поблекли.

Самолеты этой схемы практически полностью исчезли из практики авиастроения вплоть до того, как в начале второй мировой войны начали проводиться углубленные исследования "утки", нацеленные на поиск возможных путей повышения характеристик маневренности самолетов.

Однако и в этот период развития авиации не удалось реализовать достоинства этой схемы. Лишь в последние годы было создано несколько очень удачных самолетов схемы "утка", которые продемонстрировали преимущества этой схемы в некоторых специфических условиях применения авиационной техники.

Однако на этих самолетах уже применялись специальные средства предотвращения мощного срыва потока с ПГО. Это достигается путем увеличения критического угла атаки за счет выдува п отока на ПГО, использования аэродинамических профилей с различными несущими свойствами или применения ПГО в качестве лишь балансировочной поверхности (в этом случае ПГО не создает сколь-нибудь заметного вклада в подъемную силу), например, на самолетах с близким к треугольному крылом большой площади или самоле-тах-"бесхвостках" с крылом прямой стреловидности.

По схеме "утка" построены некоторые из современных ракет, но системы управления этих ракет обычно работают с использованием бортовых ЭВМ и автоматических средств повышения устойчивости, которые вырабатывают и осуществляют балансировочные команды, предотвращающие нарастание возмущений в канале тангажа.

Следует отметить, что все самолеты схемы "утка", реализованные в соответствии с техническим уровнем, достигнутым до 1960-х гг., стали сущим несчастьем. Как бы предвидя это, братья Райт уже в 1909 году (когда они стали использовать колесное шасси, позволяющее приподнять самолет от земли и обеспечить набор угла атаки на разоеге) отказались от ПГО и установили рули высоты в хвостовой части аппарата около руля направления.

Наиболее широкое распространение схема "утка" получила в области ультралегких летательных аппаратов. Этот класс современных летательных аппаратов проделал своеобразный путь назад к полетам того типа, которые выполняли братья Райт и которые характеризуются весьма ограниченным скоростным диапазоном, ограниченной маневренностью и сравнительно небольшой полезной нагрузкой.
В период с 1980 по 1983 гг., вероятно, было спроектировано и построено больше самолетов этой схемы, чем за всю предыдущую историю авиации.

Утка (аэродинамическая схема)

Rutan Model 61 Long-EZ. Пример самолёта построенного по аэродинамической схеме «утка».

«Утка» - аэродинамическая схема, при которой у летательного аппарата (ЛА) органы продольного управления расположены впереди крыла. Названа так, потому что один из первых самолёты, сделанных по этой схеме - «14-бис » Сантос-Дюмона - напомнил очевидцам утку: вынесенные вперед плоскости управления без хвоста сзади.

Преимущества

Классическая аэродинамическая схема ЛА имеет недостаток, называемый «потерями на балансировку». Это означает, что подьемная сила горизонтального оперения (ГО) на ЛА с классической схемой направлена вниз. Следовательно, крылу приходится создавать дополнительную подьемную силу (по сути, подьемная сила ГО складывается с весом ЛА).

Схема «утка» обеспечивает управление по тангажу без потерь подъемной силы на балансировку, т.к. подъемная сила ПГО совпадает по направлению с подъемной силой основного крыла. Поэтому ЛА, построенные по этой схеме, имеют лучшие характеристики грузоподьемности на единицу площади крыла.

Тем не менее, «утки» практически не используются в чистом виде из-за присущих им серьёзных недостатков.

Недостатки

Самолеты, построенные по аэродинамической схеме "Утка" имеют серьёзный недостаток, который называется «тенденция к клевку». «Клевок» наблюдается на больших углах атаки, близким к критическому. Из-за скоса потока за передним горизонтальным оперением (ПГО) угол атаки на крыле меньше, чем на ПГО. В результате по мере увеличения угла атаки срыв потока начинается сначала на ПГО. Это уменьшает подъемную силу на ПГО, что сопровождается самопроизвольным опусканием носа самолета - «клевком», - особенно опасным на взлете и посадке.

Пилоты, обученные летать на самолетах с классической аэродинамической схемой, при полетах на "утке" жалуются на ограничение обзора, создаваемого ПГО.

Также расположенное спереди подвижное горизонтальное оперение способствует увеличению эффективной площади рассеяния (ЭПР) самолета, а потому считается нежелательным для истребителей пятого поколения (примеры: американский F-22 Raptor и российский ПАК ФА) и разрабатываемого перспективного дальнего бомбардировщика (ПАК ДА), выполненных с соблюдением технологий радиолокационной малозаметности .

Биплан-тандем - «утка» с близкорасположенным передним крылом - схема, в которой основное крыло расположено в зоне скоса потока от переднего горизонтального оперения (ПГО). По такой схеме сбалансированы Saab JAS 39 Gripen и МиГ 1.44 .

Также различные разновидности схемы «утка» используются для многих управляемых ракет.

Литература

  • Лётные испытания самолётов, Москва, Машиностроение, 1996 (К. К. Васильченко, В. А. Леонов, И. М. Пашковский, Б. К. Поплавский)

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Утка (аэродинамическая схема)" в других словарях:

    Самолёта. А. с. характеризует геометрические и конструктивные особенности самолёта. Известно большое число признаков, по которым характеризуют А. с., но в основном их принято различать: по взаимному расположению крыла и горизонтального оперения… … Энциклопедия техники

    аэродинамическая схема Энциклопедия «Авиация»

    аэродинамическая схема - Рис. 1. Аэродинамические схемы самолёта. аэродинамическая схема самолёта. А. с. характеризует геометрические и конструктивные особенности самолёта. Известно большое число признаков, по которым характеризуют А. с., но в основном их принято… … Энциклопедия «Авиация»

2018-09-20T19:58:14+00:00

Легкий экспериментальный самолет МиГ-8 «Утка».

Разработчик: ОКБ Микояна, Гуревича
Страна: СССР
Первый полет: 1945 г.

Самолет МиГ-8 был разработан в ОКБ-155 в инициативном порядке с целью проверки устойчивости и управляемости аэродинамической схемы «Утка» в воздухе, изучения работы крыла большой стреловидности и отработки трехколесного шасси с передней опорой.

Работы над экспериментальной машиной начали в феврале 1945 года с проработки компоновки. В проектировании «Утки» активное участие принимали Н.И.Андрианов, Н.З.Матюк, К.В.Пеленберг, Я.И.Селецкий и А.А.Чумаченко. По расчетам МиГ-8 должен был иметь максимальную скорость 240 км/ч, что подтвердила продувка его модели в аэродинамической трубе Т-102 ЦАГИ. Однако вследствие невозможности получения в трубе Т-102 точных характеристик самолета в отношении его поведения на околокритических режимах, специалисты ЦАГИ рекомендовали первые полеты проводить с установленными концевыми фиксированными предкрылками, имеющих размах не менее размаха элеронов. В заключении о возможности первого вылета (в части аэродинамики), составленным инженером лаборатории № 1 ЦАГИ В.Н.Матвеевым, было отмечено, что выход на критические режимы в процессе испытаний самолета следует избегать, так как в отношении штопорных свойств схема «Утка», по его мнению, была очень неблагополучной.

Для определения критической скорости флаттера в ЦАГИ выполнили соответствующий расчет и провели испытание самолета для определения собственных частот колебаний. Расчет проведенный по результатам частотных испытаний дал значение критической скорости равной 328 км/ч, после чего была разрешена эксплуатация самолета МиГ-8 до скорости 270 км/ч по прибору. Статические испытания самолета провели до эксплуатационной нагрузки, составляющей 67% от разрушающей.

Первый вылет на самолете МиГ-8 «Утка» выполнил 13 августа 1945 года летчик-испытатель А.И.Жуков . Ведущим инженером по испытаниям назначили Е.Ф.Нащепыша. полеты выполняли летчики-испытатели А.И.Жуков (ОКБ-155) и А.Н.Гринчик (ЛИИ). Первый этап летных испытаний, на которых главным образом изучали устойчивость и управляемость самолета, проходил в ЛИИ НКАП в период с 28 августа по 11 сентября 1945 года. Для обеспечения большей надежности на самолете были установлены концевые предкрылки с постоянной щелью.

Проведенные испытания на устойчивость показали, что самолет при центровке 28% обладает удовлетворительной продольной устойчивостью, хорошей путевой и излишней поперечной. По рекомендации ЦАГИ для приведения в соответствие путевой и поперечной устойчивости крылу придали обратное поперечное V в 1°, а концевые шайбы развернули на 10° верхними концами внутрь крыла. Кроме того, для уравнивания степени устойчивости с фиксированным и свободным рулем в носок руля высоты поставили груз, создающий постоянное усилие на ручке пилота около 1 кг.

По результатам первого этапа испытаний специалисты ЛИИ также выдали рекомендации по доработке самолета. В связи с этим МиГ-8 в конце 1945 года прибыл на завод № 155. Здесь кили переставили на середину консолей, руль направления оборудовали компенсаторами, а на руле высоты установили управляемый триммер. Кроме того, не передней стойке установили колесо размером 500×150.

14 февраля 1946 года доработанный самолет вывели на заводской аэродром. После контрольного полета, который состоялся 21 февраля, было обнаружено, что температура масла мотора из-за снятых обтекателей не поднимается выше 20°С. В связи с этим на головки цилиндров вновь установили обтекатели. Однако следующий полет, состоявшийся 28 февраля, выявил, что температура масла превысила допустимую. Самолет отправили на доработку, где улучшили обдув цилиндров.

После отладки температурного режима винтомоторной группы 3 марта 1946 года самолет МиГ-8 перегнали с заводского аэродрома в ЛИИ НКАП для продолжения испытаний. В программу второго этапа также включили изучение штопорных свойств самолета. В процессе испытаний крыло вновь подвергли доработке: были установлены законцовки крыла с большим отрицательным углом поперечного V и сняты предкрылки. Опасения в отношении штопорных свойств «Утки» не подтвердились. Самолет входил в преднамеренныи штопор неохотно, и после того как летчик бросал управление «выскакивал» из него «как пробка из воды». Установленный на самолете МиГ-8 толкающий винт дал возможность проверить управляемость на малых скоростях при отсутствии обдува крыла винтом. Кроме того, испытания позволили изучить управляемость самолета на земле, а также вопросы взлета и посадки (заход на второй круг) в условиях отсутствия обдува винтом органов управления. Это в дальнейшем позволило использовать полученные результаты при проектировании истребителей с реактивными двигателями МиГ-9 и МиГ-15 . После испытаний, программа которых полностью была выполнена в мае 1946 года, МиГ-8 «Утка» использовался в качестве связного и транспортного самолета ОКБ. За все время эксплуатации самолета не было ни одной аварии или предпосылки к летному происшествию.

По своей схеме самолет представлял подкосный высокоплан с трехколесным неубирающимся шасси.

Каркас фюзеляжа был выполнен из сосновых брусков и имел фанерную обшивку. В кабине закрытого типа размещались пилот и два пассажира. Входную дверь расположили на левом борту фюзеляжа. Кабина имела хорошее остекление, которое обеспечивало прекрасный обзор вперед и в стороны. Носовая часть фюзеляжа заканчивалась балкой, на которой установили горизонтальное оперение. Хвостовая часть фюзеляжа переходила в моторный отсек, который заканчивался коком винта.

Двухлонжеронное крыло с постоянной относительной толщиной по размаху (12%) имело деревянный набор и полотняную обшивку. Стреловидность крыла в плане 20°, сужение 1, удлинение 6, профиль «Кларк УН». Угол установки крыла 2°. На концах крыла установили шайбы, которые являлись вертикальным оперением. Элероны типа «Фрайз» имели дюралевый каркас и полотняную обшивку.

Общая площадь вертикального оперения 3 м2. Размах горизонтального оперения 3,5 м, площадь — 2,7 м2, угол установки +2°. Профиль оперения NACA-0012. Кили деревянные, рули направления — каркас дюралевый, обшивка полотняная. Стабилизатор деревянный. Каркас руля высоты дюралевый, обшивка полотняная. Управление рулем высоты жесткое, управление рулями направления и элеронами тросовое.

Мотор воздушного охлаждения М-11ФМ мощностью 110 л.с. с двухлопастным деревянным толкающим винтом постоянного шага диаметром 2,35 м, серии 2СМВ-2. Угол установки лопастей винта 24°. Моторама трубчатая сварная. Мотор был полностью закапотирован и имел индивидуальные обдувы для каждого цилиндра. Запуск пневматический. Топливо разместили в двух дюралевых бензобаках установленных в корневой части крыла по одному с каждой стороны. Общая емкость топливных баков 118 л. Маслобак емкостью 18 л находился за пассажирской кабиной.

Стойки шасси металлические сварные. Амортизация воздушно-масляная. Носовая стойка имела масляный демпфер. Колеса основных стоек шасси тормозные размером 500 x 150, носовое колесо — 300 x 150. Колея шасси 2,5 м.

Модификация: МиГ-8
Размах крыла, м: 9,50
Длина самолета, м: 6,80
Высота самолета, м: 2,475
Площадь крыла, м2: 15,00
Масса, кг
-пустого самолета: 746
-нормальная взлетная: 1090
-топлива: 140
Тип двигателя: 1 х ПД М-11ФМ
-мощность, л.с.: 1 х 110
Максимальная скорость, км/ч: 215
Практическая дальность, км: 500
Практический потолок, м: 5200

Первый вариант самолета МиГ-8 «Утка».

Самолет МиГ-8 «Утка». Сверху первый вариант самолета.

Второй вариант самолета МиГ-8 «Утка».

Второй вариант самолета МиГ-8 «Утка».

Второй вариант самолета МиГ-8 «Утка».

Самолет МиГ-8-2 «Утка» в полете.

Идеи наших читателей

ЮАН-2 «Sky Dweller> на авиасалоне МАКС-2007

ЯпЬтсрнатиЗнар

На МАКС-2009 этого самолёта ещё не будет -конструкция совершенствуется, и следующая её версия создаётся в значительной мере из деталей и узлов предыдущей. А вот на прошлом МАКСе сверхлёгкий ЮАН-2 вызвал большой интерес, несмотря даже на подпорченный многочисленными испытаниями внешний вид. Потому что это не просто ещё один СЛА. В самолёте реализована аэродинамическая схема - так называемая «флюгерная утка», - которую без натяжки можно назвать революционной. В этой статье автор идеи и руководитель строительства опытных машин, молодой авиаконструктор Алексей Юрконенко, обосновывает преимущества новой схемы. По его мнению, она идеальна для неманёвренных самолётов, и в этой категории - весьма, кстати сказать, обширной ~ может стать основой нового направления в развитии мирового самолётостроения.

Применение современных технологий проектирования самолётов привело к результату, на первый взгляд, парадоксальному: процесс улучшения характеристик авиационной техники «потерял темп». Найдены новые аэродинамические профили, оптимизирована механизация крыла, сформулированы принципы построения рациональных структур авиационных конст

рукций, улучшена газодинамика двигателей... Что же дальше, неужели развитие самолёта пришло к своему логическому завершению?

Что ж, эволюция самолёта в рамках нормальной, или классической, аэродинамической схемы действительно замедляется, На авиационных выставках и салонах массовый зритель находит огромное и пёстрое многообразие; опыт

ный же специалист видит принципиально одинаковые самолёты, отличающиеся лишь по эксплуатацией но-тех-пологическим признакам, но имеющие общие концептуальные недостатки,

«КЛАССИКА»: ПЛЮСЫ И МИНУСЫ

Напомним, что пол термином «аэродинамическая схема самолёта* подразумевается способ обеспечения статической устойчивости и управляемости самолёта в канале тангажа 1 .

Главное и, пожалуй, единственное положительное свойство классической аэродинамической схемы заключается в том, что расположенное за крылом горизонтальное оперение (ГО) позволяет без особых трудностей обеспечить продольную статическую устойчивость на больших углах атаки самолёта".

Основным недостатком классической аэродинамической схемы является наличие так называемых потерь на балансировку, которые возникают из-за необходимости обеспечения запаса продольной статической устойчивости самолёта (рис. I). Таким образом, результирующая подъёмная сила самолёта оказывается меньше, чем подъёмная сила крыла, на величину отрицательной подъёмной силы ГО.

Максимальное значение потерь на балансировку имеет место на взлётно-посадочных режимах при выпущенной механизации крыла, когда подъёмная сила крыла и, следовательно, пикирующий момент, ею обусловленный (см. рис. 1), имеют максимальное значение. Существуют, например, пассажирские самолёты, у которых при полностью выпущенной механизации отрицательная подъёмная сила ГО равна 25% их веса. Значит, примерно на ту же величину переразмерено крыло, и все экономические и эксплуатационные показатели такого летательного аппарата, мягко говоря, далеки от оптимальных значений.

АЭРОДИНАМИЧЕСКАЯ СХЕМА «УТКА»

Как избежать этих потерь? Ответ прост: аэродинамическая компоновка статически устойчивою самолёта должна исключать балансировку с отрицательной подъёмной силой на горизон-

" Тангаж - угловое движение летательного аппарата относительно поперечной оси инерции. Угол тангажа - угол между продольной осью летательного аппарата и горизонтальной гласностью.

1 Угол атаки самолёта - угол между направлением скорости набегающего потока и продольной cmpoume.tbHuu осью самолёта.

Я отношусь к той категории моделистов, которым интересно самим сконструировать и построить самолет, а потом получать удовольствие от управления им. Но главное удовольствие - от результата творческого поиска.

Отлетав несколько сезонов на самодельном Diamant-е с OS MAX 50, стало немного скучно. Было понятно, что может самолет, и что могу я. Конечно, можно было заняться оттачиванием навыков 3D пилотажа, но душа просила чего-то необычного. Хотелось построить самолет, которого нет ни у кого, и который обладал бы уникальными, присущими только ему, пилотажными возможностями.

Попытка 1

Посмотрел, как летают радио бойцовки, появилась идея построить фанфлай типа "летающее крыло". Сказано-сделано. Начерчен чертеж, проработана компоновка, и вот самолет готов.

  • Размах: 1450 мм
  • Длинна: 1000 мм
  • Вес: 2000 г
  • Двигатель: OS MAX 50

Выезжаю на поле и понимаю, что ничего интересного я не построил. Да, летит, да, крутит какие-то фигуры. Но ничего интересного, все как обычно, даже немного скучно.

Проанализировав ситуацию, понимаю, что так и должно было быть… Классическая схема и схема "летающее крыло" отработаны до мелочей, и ничего нового предложить не могут. Начался творческий застой…

Находясь в кризисе, листаю старые журналы и натыкаюсь на модель схемы "Утка". Это уже становится интересно.

Идея

Схема утка обладает одной интересной особенностью. Рулевые поверхности расположены перед и за центром тяжести. Соответственно если смикшировать руль высоты с элеронами и сделать это как на кордовой пилотажке, то разворачивающий момент от рулей высоты будет приложен спереди и сзади центра тяжести. Это в свою очередь позволит выполнять петли очень малого радиуса. Также было известно из большой авиации то, что эта схема очень стабильно ведет себя на срывных режимах. Вот только толкающий винт расположенный сзади не способствовал выполнению 3D пилотажа.

Вывод напрашивался сам собой, двигатель надо поставить спереди, но тогда возникали проблемы с центровкой. Так как основное крыло расположено сзади (в отличие от классической схемы, где стабилизатор не несет вес самолета, у схемы утка он создает подъемную силу), а центр тяжести находится в пределах 10-20% САХ, сбалансировать эту конструкцию не было возможности. Опять тупик.… Листая дальше журналы, нахожу старый номер "Крылья Родины", в котором рассказывается о самолетах особых схем, и в их числе приведена схема "Тандем". А самое интересное в том, что там даны формулы расчета положения центра тяжести. Выдержку из этой статьи я и привожу.

Выдержка из статьи в журнале "Крылья родины" за февраль 1989 года.

При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется "подхватом" и считается совершенно недопустимым. Способ борьбы с "подхватом" на "утке" и "тандеме" найден давно: необходимо увеличить угол установки переднего крыла по отношению к заднему, причем разница в углах установки должна составлять 2-3 градуса.

Правильно спроектированный самолет автоматически опускает нос, переходит на меньшие углы атаки и набирает скорость, тем самым реализуется идея создания несваливаемого самолета. У "стандартной утки" (площадь горизонтального оперения 15-20% от площади крыла и плечом оперения, равным 2.5-3 САХ) центр тяжести должен располагаться в пределах от 10 до 20% САХ. У тандема центровка должна быть в пределах 15-20% В экв (хорды эквивалентного крыла) смотри рисунок. Хорда эквивалентного крыла определяется следующим образом:

В экв = (S п +S з)/(l п 2 +l з 2) 1/2

При этом расстояние до носика эквивалентной хорды равняется:

Х экв = L/(1+S п /S з *К)-(S п +S з)/(4*(l п 2 +l з 2) 1/2)

Где К – коэффициент, учитывающий разность углов установки крыльев, скосы и торможение потока за передним крылом, равняется:

К = (1+0,07*Q)/((0.9+0.2*(H/L))*(1-0.02*(S п /S з)))

В приведенных формулах:

  • S п - площадь переднего крыла.
  • S з - площадь заднего крыла.
  • L - аэродинамическое плечо тандема.
  • l п - размах переднего крыла.
  • l з - размах заднего крыла.
  • Q - превышение угла установки переднего крыла над задним.
  • H - расстояние по высоте между осью переднего и заднего крыльев.

Окончательный вариант

Теперь общая идея сформировалась. Двигатель ставим спереди, крылья делаем одинаковыми, а приемник и аккумулятор сдвигаем в хвост самолета.

Привод элеронов на переднем и заднем крыльях раздельный. Всего используется 6 рулевых машинок.

Сразу строить самолет под 50-ый мотор было страшно. Оставался непонятным целый круг вопросов: на каком крыле делать элероны, а на каком руль высоты или на том и другом; какие углы атаки должны быть у крыльев; насколько крылья должны быть разнесены друг от друга; и, вообще, будет ли это летать?

Но творческий зуд захватил разум, и все сомнения были отброшены. Строю "Тандем" под 25-ый мотор. На нем и проверю, как это летит…

Попытка 2

Модель прорисована, начерчена и построена. Получилось следующее.

  • Размах обоих крыльев: 1000 мм
  • Длинна: 1150 мм
  • Хорда крыла с элероном: 220 мм
  • Расстояние между крыльями: 200 мм

Переднее крыло ставилось ниже оси двигателя на 20 мм, заднее выше на 20 мм. Крылья были абсолютно одинаковыми и взаимно заменяемыми, только на одном крыле были сделаны элероны, а на другом руль высоты.

Полет

Первый полет только добавил уверенности в правильности направления поиска. Модель была абсолютно предсказуема и адекватна в воздухе, стабильна на малых скоростях и самопроизвольно не валилась в штопор. Схема с рулем высоты на переднем крыле показала себя с лучшей стороны по отношению к схеме, когда руль высоты находился на заднем крыле. Это обусловлено тем, что на малых скоростях он выполнял роль закрылков, увеличивая подъемную силу на переднем крыле.

Решено! Изучаю поведение этой модели в воздухе и начинаю строить модель под 61 мотор. Пока строится большой самолет, летаем на маленьком. В процессе полетов находим еще одну интересную особенность модели. Она могла остановиться и стоять в воздухе против ветра. При перетягивании ручки на себя на малом газу она проявляла склонность к парашютированию.

Получилось следующее:

  • Размах: 1400 мм
  • Длинна: 1570 мм
  • Хорда с элероном: 300 мм
  • Расстояние между крыльев: 275 мм

Первый полет осуществляю с элеронами на заднем крыле и рулем высоты спереди.

Впечатления:

Устойчив, стабилен на всех скоростях, весьма предсказуем. Однако в полете большой модели открылась одна особенность. Самолет очень чутко реагирует на руль высоты. То есть, вывел его в горизонтальный полет, оттримировал на среднем газу - летит ровно и устойчиво, но стоит тронуть ручку высоты, и он резко, но на небольшой угол, меняет направление полета. Не то чтобы это напрягало или было опасно, просто надо учесть, что модель очень чутко реагирует на руль высоты.

Для учебного самолета это конечно неприемлемо, но ведь у нас FAN рассчитанный на продвинутого пилота.

Теперь пробую смикшировать руль высоты и элероны. То есть, когда тяну ручку на себя на переднем крыле, оба элерона идут вниз, а на заднем вверх. А вот, когда даю крен, элероны работают параллельно на обоих крыльях.

Неустойчивое поведение модели в горизонтальном полете, скорее всего, было связано с неправильными углами установки крыльев. К сожалению, изменить их без существенной переделки не было возможности.

Модель окончательно настроена, пробую, что она может в воздухе.

  1. Убираю газ. Тяну ручку на себя (зажатые расходы). Модель сбавляет скорость почти до остановки, потом плавно клюет носом, разгоняется и повторяет то же самое. Никакой тенденции к штопору. То есть, если специально не срывать поток с крыла, то срыв происходит очень плавно и тут же с набором скорости восстанавливается.
  2. Убираю газ. Тяну ручку на себя (полные расходы). Модель останавливается в воздухе и, сохраняя горизонтальное положение, начинает, как парашют опускаться вниз. Фигура "парашют". Даю ручку от себя – она переворачивается на спину и продолжает свой спуск вертикально вниз (просто чума какая-то). Фигура "перевертыш". То есть модель способна управляться рулями в режиме 100% срыва потока с несущих плоскостей!
  3. Расходы на максимум – кручу петлю. Правда, петлей это нельзя назвать. Скорее это классический "водопад" из 3D комплекса. Модель крутится вокруг фонаря, при этом медленно снижаясь. Причем работать газом не требуется. И очень легко меняется направление вращения при перекладке рулей. Фигура "шейкер".
  4. Делаю "парашют" и отклоняю руль поворота. Получаю очень медленный плоский штопор - фигура "сухой лист".
  5. Такая фигура как "хариер" переходит в разряд детских.
  6. "Квадратная петля" получается именно квадратной, поскольку радиусы поворота на углах почти не читаются.

Описывать фигуры можно еще очень долго. Скажу только одно. Этот самолет может больше, чем я, и способен научить продвинутого пилота еще нескольким новым фигурам недоступным на обычной технике. И особенно хочется отметить прогнозируемость и стабильность самолета, что бы вы с ним не вытворяли.

Кажется, я получил то, что ХОТЕЛ!

Попытка 4

Хоть второй и третий самолеты показали отличные летные данные, но остался еще один очень важный вопрос: какие оптимальные углы атаки у крыльев? Для решения этой задачи было решено построить модель под 50-ый мотор, с возможностью изменять угол атаки крыльев на земле. К тому же, модель №3 была разбита из-за отказа аппаратуры.

Также было решено поставить переднее крыло выше оси двигателя, а заднее ниже (на предыдущей модели было наоборот, просто хотелось проверить - скажу сразу, каких либо изменений в поведении модели я не заметил.) и сделать небольшой скос по передней кромке, переднее крыло получило неявно выраженное положительное "V", а заднее отрицательное "V". Это должно было придать стабильности на малых скоростях в прямом и обратном пилотаже соответственно.

Подробно останавливаться на описании конструкции и процессе изготовления не буду. Она ничем не отличается от обычного Фанфлая и понятна из фотографий.

Понравилась статья? Поделитесь ей