Контакты

Реакция фишера тропша примеры. Производство на основе синтез-газа синтетических моторных топлив по методу фишера-тропша. состав продуктов реакции в зависимости от применяемых катализаторов, температуры и давления. схема. Представления о ключевых реакциях

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

Процесс Фишера-Тропша

Введение

углеводород катализатор технологический

История знает немало примеров, когда в силу острой необходимости рождались новые оригинальные подходы к решению давно существующих жизненно важных проблем. Так, в предвоенной Германии, лишенной доступа к нефтяным источникам, назревал жесткий дефицит топлива, необходимого для функционирования мощной военной техники. Располагая значительными запасами ископаемого угля, Германия была вынуждена искать пути его превращения в жидкое топливо. Эта проблема была успешно решена усилиями превосходных химиков, из которых, прежде всего, следует упомянуть Франца Фишера, директора Института кайзера Вильгельма по изучению угля.

В 1926 году была опубликована работа Франца Фишера и Ганса Тропша «О прямом синтезе нефтяных углеводородов при обыкновенном давлении» . В ней сообщалось, что при восстановлении водородом монооксида углерода при атмосферном давлении в присутствии различных катализаторов (железо-оксид цинка или кобальт-оксид хрома) при 270єС получаются жидкие и даже твердые гомологи метана.

Так возник знаменитый синтез углеводородов из монооксида углерода и водорода, называемый с тех пор синтезом Фишера-Тропша (ФТ). Смесь CO и H 2 в различных соотношениях, называемая синтез-газом, может быть получена как из угля, так и из любого другого углеродсодержащего сырья. После изобретения процесса германскими исследователями было сделано множество усовершенствований и исправлений и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов.

Справедливости ради следует отметить, что синтез Фишера-Тропша возник не на пустом месте - к тому времени существовали научные предпосылки, которые базировались на достижениях органической химии и гетерогенного катализа. Еще в 1902 году П. Сабатье и Ж. Сандеран впервые получили метан из СО и H 2 . В 1908 году Е. Орлов открыл, что при пропускании монооксида углерода и водорода над катализатором, состоящим из никеля и палладия, нанесенных на уголь, образуется этилен .

Первый промышленный реактор был пущен в Германии в 1935 году, использовался Co-Th осажденный катализатор. В 1930-40-е годы на основе технологии Фишера-Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40ч55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75ч100 и твердого парафина. Сырьем для процесса служил уголь, из которого газификацией получали синтез-газ, а из него углеводороды. Промышленность искусственного жидкого топлива достигла наибольшего подъема в годы второй мировой войны. К 1945 г. в мире имелось 15 заводов синтеза Фишера-Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн. т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла. В Германии синтетическое топливо почти полностью покрывало потребности немецкой армии в авиационном бензине. Годовое производство синтетического топлива в этой стране достигло более 124 000 баррелей в день, т.е. около 6,5 миллионов тонн в 1944 году .

После 1945 года в связи с бурным развитием нефтедобычи и падением цен на нефть отпала необходимость синтеза жидких топлив из СО и Н 2 . Наступил нефтехимический бум. Однако в 1973 году разразился нефтяной кризис - нефтедобывающие страны ОПЕК (Organization of Petroleum Exporting Countries, Организация стран-экспортеров нефти) резко повысили цены на сырую нефть, и мировое сообщество вынуждено было осознать реальную угрозу истощения в обозримые сроки дешевых и доступных нефтяных ресурсов. Энергетический шок 70-х годов возродил интерес ученых и промышленников к использованию альтернативного нефти сырья, и здесь первое место, бесспорно, принадлежит углю. Мировые запасы угля огромны, они, по различным оценкам, более чем в 50 раз превосходят нефтяные ресурсы, и их может хватить на сотни лет .

Кроме этого, в мире имеется значительное количество источников углеводородных газов (как непосредственно залежи природного газа, так и попутный нефтяной газ), которые по тем или иным причинам не используются по экономическим причинам (значительная удаленность от потребителей и, как следствие, большие затраты на транспортировку в газообразном состоянии). Однако мировые запасы углеводородов иссякают, потребности в энергии растут, и в этих условиях расточительное использование углеводородов недопустимо, о чем свидетельствует неуклонный рост мировых цен на нефть с начала 21 века.

В этих условиях синтез Фишера-Тропша снова приобретает актуальность.

1. Химизм процесса

1.1 Основные реакции образования углеводородов

Суммарные реакции синтеза углеводородов из оксидов углерода и водорода в зависимости от катализатора и условий процесса можно представить разными уравнениями, но все они сводятся к двум основным . Первая основная реакция - собственно синтез Фишера-Тропша:

(1)

Вторая основная реакция - равновесие водяного газа. Этот процесс особенно легко протекает на железных катализаторах как вторичный:

(2)

С учетом этой вторичной реакции для ФТ-синтеза на железных катализаторах получается суммарное уравнение:

(3)

Реакции (1) и (3) при стехиометрическом, исчерпывающем превращении позволяют получить максимальный выход 208,5 г углеводородов на 1 м 3 смеси CO + Н 2 при образовании только олефинов.

Реакция (2) может подавляться при низких температурах, малом времени контакта, циркуляции синтез-газа и удалении воды из циркулирующего газа, так что синтез может протекать частично по уравнению (1) с образованием воды и частично по уравнению (3) с образованием СO 2 .

Из уравнения (1) при удвоенном превращении по уравнению (2) получается суммарное уравнение синтеза углеводородов из СО и Н 2 O по Кёльбелу-Энгельгардту:

(4)

Стехиометрический выход равен 208,5 г [-СН 2 -] на 1 м 3 смеси СО + Н 2 .

Образование углеводородов из СО 2 и Н 2 обусловлено уравнением (1) и реакцией, обратной (2):

(5)

Стехиометрический выход 156,25 г. [-СН 2 -] на 1 м 3 смеси СO 2 + Н 2 .

В общем виде уравнения выглядят следующим образом:

Для синтеза парафинов

(6)

(7)

(8)

(9)

Для синтеза олефинов

(10)

(11)

(12)

(13)

1.2 Побочные реакции

Нежелательными реакциями следует считать гидрирование СО в метан, разложение СО и окисление металла водой или диоксидом углерода.

Метан образуется в присутствии кобальтовых и никелевых катализаторов:

(14)

Стехиометрический выход 178,6 г СН 4 на 1 м 3 смеси СО + Н 2 . Вода, образующаяся при этом, конвертируется затем (особенно на железных катализаторах) в присутствии СО в смесь СО 2 + Н 2 , поэтому суммарная реакция образования метана иная:

(15)

Стехиометрический выход 178,6 г СН 4 на 1 м 3 смеси СО + Н 2 . При температурах выше 300°С метан образуется также при гидрировании СО 2 по суммарному уравнению:

(16)

Стехиометрический выход 142,9 г СН 4 на 1 м 3 смеси СO 2 + H 2 . Процесс синтеза осложняется образованием углерода по реакции Будуара:

(17)

ФТ-синтез может быть направлен в сторону преимущественного образования спиртов или альдегидов, которые при синтезе углеводородов образуются как побочные продукты. Основные уравнения в случае спиртов следующие

(18)

(19)

(20)

а альдегиды образуются так:

(21)

(22)

Уравнения для других продуктов, образующихся в небольшом количестве (кетоны, карбоновые кислоты, эфиры), опущены.

1.3 Механизм реакций

Гидрирование оксида углерода в процессе ФТ представляет собой комплекс сложных, параллельных и последовательных реакций. Первая стадия - одновременная хемосорбция оксида углерода и водорода на катализаторе. Оксид углерода в этом случае соединяется углеродным атомом с металлом, вследствие чего ослабляется связь С-О и облегчается взаимодействие СО и водорода с образованием первичного комплекса. С этого комплекса и начинается рост углеводородной цепи («начало цепи»). В результате дальнейшего ступенчатого присоединения поверхностного соединения, несущего один углеродный атом, углеродная цепочка удлиняется («рост цепи»). Рост цепи заканчивается в результате десорбции, гидрирования или взаимодействия растущей цепочки с продуктами синтеза («обрыв цепи»).

Основные продукты этих реакций - насыщенные и ненасыщенные углеводороды алифатического ряда, а побочные продукты - спирты, альдегиды и кетоны. Реакционноспособные соединения (ненасыщенные углеводороды, альдегиды, спирты и др.) могут при последующих реакциях встраиваться в растущие цепи или образовывать поверхностный комплекс, дающий начало цепи. В дальнейшем реакции между образующимися продуктами приводят к кислотам, эфирам и т.д. Реакции дегидроциклизации, протекающие при более высоких температурах синтеза, приводят к ароматическим углеводородам. Не следует исключать также протекание крекинга или гидрокрекинга более высококипящих углеводородов, первично образовавшихся и десорбированных с катализатора, если они снова адсорбируются на нем.

Механизм реакции, несмотря на десятилетия его изучения, в деталях остается неясен . Впрочем, эта ситуация типична для гетерогенного катализа. Наиболее признанным является механизм с ростом на конце цепи . Молекулы или атомы, переходящие в возбужденное состояние при одновременной хемосорбции оксида углерода и водорода на катализаторе, реагируют с образованием енольного первичного комплекса (схема А 1), который также дает начало цепи. Рост цепи (схема А 2) начинается с отщепления молекулы Н 2 O от двух первичных комплексов (с образованием С-С-связи) и отрыва атома С от атома металла в результате гидрирования. Образовавшийся комплекс С 2 , присоединяя один первичный комплекс, выделяет молекулу Н 2 O и в результате гидрирования освобождается от металла. Так, путем конденсации и гидрирования происходит ступенчатый рост цепи на каждый последующий С-атом. Начало цепи можно изобразить так:

Схема А 1

Рост цепи у крайних С-атомов идет так:

Схема А 2

и так далее до:

Другая возможность состоит в том, что первоначально связь Me-С в первичном адсорбционном комплексе частично гидрируется, а затем образовавшееся соединение конденсируется с первичным комплексом, что ведет к наращиванию цепи по схеме (А 3) или по схеме (А 4) и в результате образуется вторичный метилразветвленный адсорбционный комплекс:

Схема А 3

Схема А 4

Десорбция первичного адсорбционного комплекса, всегда содержащего гидроксигруппу, приводит к альдегидам, а при последующих реакциях - к спиртам, кислотам и эфирам:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Углеводороды могут образоваться в результате дегидратации или расщепления адсорбционных комплексов:

Схема А 5

Начало цепи могут также дать спирты и альдегиды после их адсорбции на катализаторе в фенольной форме

или олефины, которые, вероятно, после взаимодействия с водой связаны в енольной форме на катализаторе.

В качестве еще одной возможности роста цепи рассматривается полимеризация СН 2 -групп. При гидрировании первичного комплекса образуются НО-СН 2 - и СН 2 -поверхностные комплексы:

Схема Б

Гидрированный поверхностный комплекс взаимодействует с аналогичным комплексом с отщеплением воды (Б 1):

Схема Б 1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Точно так же образовавшиеся поверхностные комплексы могут взаимодействовать с первичным, негидрированным комплексом (с образованием С 2 -аддитивного комплекса по схеме Б 2) или реагировать с комплексом после его гидрирования (по схеме Б 1):

Схема Б 2

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Цепь может расти и путем полимеризации первично образовавшихся СН 2 -групп по схеме В (с изменением заряда на Me):

Схема В

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Вклад полимеризации в процесс роста цепи зависит от соотношения скоростей конденсации и полимеризации.

2. Катализаторы

ФТ-синтез начинается с одновременной хемосорбции СО и Н 2 на атомах металла. Для образования такой хемосорбционной связи особенно пригодны переходные металлы с 3d- и 4f-электронами или их соединения внедрения (карбиды, нитриды и т.д.). Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, например, силикагель и глинозем. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан, при повышении же давления никель образует летучий карбонил и вымывается из реактора .

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы). Типичными для их работы являются давление 1ч50 атм и температура 180ч250°С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ.

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР. По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200ч360°С), и позволяют получать более широкий спектр продуктов: парафины, низшие б-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО: Н 2 ниже стехиометрического 1: 2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается. Кобальтовые контакты способны работать без регенерации значительно дольше. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м 3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизельное топливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.

При воздействии различных агентов на свежеприготовленные катализаторы группы железа изменяется состав и структура катализаторов, появляются фазы, действительно активные в ФТ-синтезе. В то время как число таких фаз в случае кобальта и никеля относительно небольшое, для железа их много, поэтому каталитическая система усложняется. Железо образует с углеродом или другими металлоидами (азот, бор и т.д.) соединения внедрения различного состава, не утрачивая при этом «металлического» характера, необходимого для ФТ-сннтеза.

Многие исследования подтвердили, что железные катализаторы в ходе ФТ-синтеза изменяются по фазовому составу, степени окисления и углеродным структурам внедрения. Железо восстановленного катализатора к началу синтеза переходит в карбид Fe 2 C (карбид Хэгга). Одновременно, но медленнее, образуется оксид Fe 3 O 4 , доля которого (в расчете на исходное железо) постоянно повышается, в то время как содержание карбида Fe 2 C в зависимости от времени работы и температуры меняется мало. Содержание свободного углерода возрастает с увеличением времени синтеза. В условиях эксплуатации фазовый состав катализатора находится в равновесии с составом реакционной смеси и только в малой степени зависит от способа его приготовления или предварительной обработки (восстановление, карбидирование) .

В работе Бартоломью показано, что на Co- и Ni - катализаторах СО гидрируется в метан по двум маршрутам, каждый из которых связан с определенными участками на поверхности . А.Л. Лапидус с сотрудниками выдвинули двухцентровую модель Co-катализатора синтеза ФТ. Согласно этим представлениям, центрами первого типа являются кристаллиты металлического Со. На них СО адсорбируется диссоциативно и затем гидрируется в метан. На этих же центрах происходит реакция диспропорционирования CO, приводящая к зауглероживанию катализатора. Центры второго типа представляют собой границу между металлическим Со и оксидной фазой на поверхности катализатора. Они ответственны за рост углеводородной цепи. Оксид углерода адсорбируется на СоO в слабосвязанной ассоциативной форме, затем перемещается на носитель, где образует с водородом поверхностные комплексы типа CH x O. Эти комплексы взаимодействуют друг с другом, образуя полимерные структуры на поверхности. Их гидрирование на СоO дает углеводороды.

Два типа адсорбции СО на поверхности обнаруживаются по спектру термопрограммированной десорбции (ТПД) СО, в котором центрам первого типа отвечает пик с T max в области 250-350°С, центрам второго - T max < 250°C. По соотношению площадей пиков можно судить о доле каждого из типов центров и, соответственно, предсказывать каталитическое действие контакта.

Эксперименты показали хорошую корреляцию между выходом углеводородов и количеством центров слабосвязанной адсорбции СО на поверхности контакта .

Оксидная фаза Со-катализаторов обычно формируется в процессе их предварительной термообработки (прокаливания и / или восстановления) вследствие взаимодействия оксидного носителя (SiO 2 , Al 2 O 3 и др.), оксида кобальта и промотора. Катализаторы, не содержащие оксидной фазы, не способны катализировать образование жидких углеводородов из СО и Н 2 , поскольку не имеют на своей поверхности центров полимеризации.

Таким образом, оксидная фаза катализаторов синтеза ФТ играет определяющую роль в образовании жидких углеводородов, и для создания эффективных катализаторов этого процесса необходимо особое внимание уделять подбору носителя и проведению предварительной термообработки катализатора. Воздействуя на активную часть катализатора путем предварительной термообработки, приводящей к усилению взаимодействия активной фазы с носителем, или вводя в состав катализатора модифицирующие оксидные добавки, можно усилить полимеризационные свойства катализатора и, следовательно, увеличить селективность реакции в отношении образования жидких углеводородов.

Промоторы по принципу действия подразделяются на две группы - структурные и энергетические.

В качестве структурных промоторов используются трудно восстанавливаемые оксиды тяжелых металлов, например Аl 2 О 3 , ThO 2 , MgO и СаО. Они способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации каталитически активной фазы. Подобную функцию выполняют и носители - кизельгур, доломит, диоксид кремния (в форме свежеосажденного геля гидроксида или силиката калия).

Энергетические промоторы, которые также называют химическими, электронными или активирующими добавками, согласно электронному механизму реакции, увеличивают ее скорость и влияют на селективность. В качестве энергетических промоторов могут действовать также химически активные структурные промоторы. Энергетические промоторы (особенно щелочи) значительно влияют и на текстуру катализатора (поверхность, распределение пор).

В качестве энергетических промоторов для железных катализаторов (независимо от способа получения) чаще всего используют карбонаты щелочных металлов. Железным катализаторам, получаемым разными способами, соответствует неодинаковая оптимальная концентрация щелочной добавки. Осажденные катализаторы не должны содержать более 1% К 2 СО 3 (в расчете на Fe); для определенных осажденных катализаторов оптимум составляет 0,2% К 2 СО 3 (отклонение в 0,1% заметно влияет на активность и селективность). Для плавленых катализаторов указана оптимальная концентрация? 0,5% К 2 О.

К промоторам, обусловливающим и структурное, и энергетическое влияние, можно отнести медь. Медь облегчает восстановление железа, причем этот процесс в зависимости от количества меди может протекать при температуре, более низкой (вплоть до 150°С), чем без добавки. Далее эта добавка при сушке гидроксида железа (II и III) способствует окислению его до Fe 2 O 3 . Медь благоприятствует образованию соединений железа с углеродом и вместе со щелочью ускоряет восстановление железа, образование карбида и углерода. На селективность ФТ-синтеза медь не влияет .

3. Факторы, влияющие на процесс

3.1 Качество сырья

Выход и состав продуктов ФТ-синтеза в значительной степени зависит от соотношения СО: Н 2 в исходном синтез-газе. Это соотношение в свою очередь существенно зависит от применяемого способа получения синтез-газа. В настоящее время существуют три основных промышленных метода получения последнего.

1. Газификация угля. Процесс основан на взаимодействии угля с водяным паром:

Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900ч1000єС. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс:

2. Конверсия метана. Реакция взаимодействия метана с водяным паром проводится в присутствии никелевых катализаторов (Ni/Al 2 O 3) при повышенных температурах (800ч900єС) и давлении:

В качестве сырья вместо метана может быть использовано любое углеводородное сырье.

3. Парциальное окисление углеводородов. Процесс заключается в неполном термическом окислении углеводородов при температурах выше 1300єС:

Способ также применим к любому углеводородному сырью.

При газификации угля и парциальном окислении соотношение СО: Н 2 близко к 1: 1, тогда как при конверсии метана оно составляет 1: 3 .

В целом, можно отметить следующие закономерности :

- в случае исходной смеси, обогащенной водородом, получаются предпочтительно парафины, причем термодинамическая вероятность их образования уменьшается в ряду метан > низкомолекулярные н-алканы > высокомолекулярные н-алканы;

- синтез-газ с высоким содержанием оксида углерода ведет к образованию олефинов и альдегидов, а также способствует отложению углерода. Вероятность образования алкенов уменьшается в ряду высокомолекулярные н-олефины > низкомолекулярные н-олефины.

3.2 Температура

ФТ-синтез - сильно экзотермическая реакция. Образующееся тепло составляет до 25% от теплоты сгорания синтез-газа. Скорость синтеза и одновременно выход продукта с единицы объема катализатора за единицу времени повышаются с увеличением температуры. Однако скорость побочных реакций при этом также возрастает. Поэтому верхняя температура ФТ-синтеза ограничена в первую очередь нежелательным метано- и коксообразованием . Особенно сильное увеличение выхода метана при повышении температуры наблюдается для Co катализаторов.

Как правило, процесс проводится при температуре 190ч240°C (низкотемпературный вариант, для Co и Fe катализаторов) или 300ч350°C (высокотемпературный вариант, для Fe катализаторов) .

3.3 Давление

Так же, как при повышении температуры, с ростом давления растет и скорость реакций. Кроме этого, повышение давления в системе способствует образованию более тяжелых продуктов. Типичными значениями давлений для промышленных процессов являются 0,1ч5 МПа. Так как повышенное давление позволяет увеличить производительность синтеза, для экономической эффективности процесс проводят при давлении 1,2ч4 МПа.

Совместное влияние температуры и давления, а также природы катализатора на выход различных продуктов удовлетворяет распределению Андерсона-Шульца-Флори (ASF), описываемому формулой

где P n - массовая доля углеводорода с углеродным номером n;

б=k 1 /(k 1 +k 2), k 1 , k 2 - константы скорости роста и обрыва цепи соответственно.

Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина б снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину б. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции .

Графически распределение ASF представлено на рисунке 1.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

3.4 Объемная скорость

Повышение объемной скорости (или уменьшение времени контакта) газа не благоприятствует реакциям, протекающим с более низкой скоростью. К ним принадлежат реакции, идущие на поверхности катализатора, - отщепление кислорода, гидрирование олефинов и рост углеродной цепи. Поэтому с уменьшением среднего времени контакта в продуктах синтеза повышается количество спиртов, олефинов и соединений с короткой цепью (газообразные углеводороды и углеводороды из интервала выкипания бензиновой фракции) .

4. Разновидности технологических схем

Главной технической проблемой синтеза Фишера-Тропша является необходимость съема большого количества теплоты, выделяющейся в результате сильно экзотермических химических реакций. Конструкция реактора во многом определяется также видом продуктов, для получения которых он предназначен. Существуют несколько разновидностей конструкции реакторов для ФТ-синтеза, которые определяют ту или иную технологическую схему процесса.

4.1 Схема с многотрубным реактором и стационарным слоем катализатора

В таких реакторах протекает низкотемпературный процесс в газовой фазе. Конструкция многотрубного реактора представлена на рисунке 2.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Многотрубные реакторы просты в эксплуатации, не создают проблем с отделением катализатора, могут использоваться для получения продуктов любого состава. Однако они имеют целый ряд недостатков: сложность в изготовлении, большая металлоемкость, сложность процедуры перегрузки катализатора, значительный перепад давления по длине, диффузные ограничения на крупных зернах катализатора, сравнительно невысокий теплоотвод .

Одна из возможных технологических схем высокопроизводительного ФТ-синтеза в многотрубном реакторе представлена на рисунке 3.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Технологические параметры представлены в таблице 1, состав получаемых продуктов - в таблице 2.

Таблица 1 - Условия работы промышленных установок газофазного синтеза Фишера-Тропша на стационарном слое катализатора

Таблица 2 - Типичный состав углеводородов, получаемых в промышленных синтезах Фишера-Тропша на стационарном слое катализатора

Характеристика

Значение

Состав продукта (средние данные), % масс.

углеводороды:

Степень превращения смеси СО + Н 2 , %

Выход углеводородов С 2+ , г на 1 м 3 смеси СО + Н 2

4.2 Схема с псевдоожиженным слоем катализатора

Реакторы с кипящим слоем обеспечивают хороший теплоотвод и изотермическое протекание процесса. Диффузные ограничения в них минимальны за счет высокой линейной скорости газа и использования мелкодисперсного катализатора. Однако такие реакторы сложно вывести на рабочий режим. Проблемой является отделение катализатора от продуктов. Отдельные узлы подвергаются сильной эрозии. Принципиальным ограничением реакторов с кипящим слоем является невозможность получения в них тяжелых парафинов . На рисунке 4 представлена технологическая схема ФТ-синтеза в реакторе с псевдоожиженным слоем катализатора.

Рисунок 4. Схема процесса Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора:

1, 3 - подогреватели; 2 - генератор синтез-газа; 4 - теплообменники; 5 - промывная колонна; 6 - реактор; 7 - циклон; 8 - сепаратор.

Технологические параметры процесса при работе по рассматриваемой схеме представлены в таблице 3, состав получаемых продуктов - в таблице 4.

Таблица 3 - Условия работы промышленной установки синтеза Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора

Таблица 4 - Типичный состав углеводородов, получаемых в реакторе с псевдоожиженным слоем катализатора

4.3 Схема с циркулирующим взвешенным порошкообразным катализатором

Данная схема также относится к высокотемпературному процессу Ф-Т. Технологическая схема процесса Фишера-Тропша в потоке взвешенного порошкообразного катализатора приведена на рисунке 5.

Рисунок 5. Схема ФТ-синтеза в потоке взвешенного порошкообразного катализатора:

1 - печь; 2 - реактор; 3 - холодильники; 4 - колонна-сепаратор для промывки маслом; 5 - конденсатор; 6 - разделительная колонна; 7 - колонна для промывки получаемого бензина; 8 - колонна для промывки газа.

Технологические параметры синтеза в случае проведения процесса в потоке взвешенного порошкообразного катализатора представлены в таблице 5, состав получаемых продуктов - в таблице 6.

Таблица 5 - Условия работы промышленных установок синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

Таблица 6 - Типичный состав углеводородов, получаемых на установке синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

4.4 Схема с барботажным (slurry) реактором

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реактор барботажного типа, который также называют пузырьковым (slurry), считается наиболее эффективным для синтеза ФТ. В этом аппарате синтез-газ проходит снизу вверх через слой высококипящего растворителя, в котором суспензирован мелкодисперсный катализатор. Подобно реакторам с кипящим слоем, в пузырьковом реакторе обеспечиваются эффективный массообмен и теплоотвод. В то же время в нем возможно получение тяжелых продуктов, как в трубчатом аппарате . На рисунке 6 представлена схема работы такого реактора.

Технологическая схема с применением барботажного реактора представлена на рисунке 7.

Рисунок 7. Схема ФТ-синтеза в барботажном реакторе:

1 - компрессор; 2 - расходомеры;.3 - диафрагмы; 4 - пробоотборники; 5 - реактор: 6 - паросборник; 7 - теплообменник; 8 - продуктовые емкости; 9 - разделительные емкости; 10 - насосы; 11 - холодильник; 12 - установка для выделения СО 2 ; 13 - фильтр; 14 - аппарат для приготовления катализаторной суспензии; 15 - центрифуга; 16 - емкость для масла.

На примере данной схемы можно отметить большую технологическую гибкость синтеза ФТ, когда варьируя качеством сырья и технологическими показателями можно получать продукт требуемого фракционного состава (таблица 7).

Таблица 7 - Состав продуктов при различных режимах ведения ФТ-синтеза в барботажном реакторе

Показатели

Получение разных продуктов

с низкой мол. массой

со средней мол. массой

с высокой мол. массой

Выход суммарного продукта С 3+ , г на 1 м 3 смеси СО+Н 2

Значения технологических параметров для рассматриваемой схемы приведены в таблице 8.

Таблица 8 - Условия работы промышленных установок синтеза Фишера-Тропша с барботажным реактором

Параметр

Значение

Давление, МПа

Температура,°С

Соотношение Н 2: СО в исходном газе

Объемная скорость, ч -1

Степень превращения

СО

смеси СО + Н 2 , %

89ч92

Выход углеводородов С 1+ , г на 1 м 3 смеси СО + Н 2

Для получения низкомолекулярных углеводородов применяются более высокие температура и объемная скорость, но пониженное давление. Если же требуются высокомолекулярные парафины, то указанные параметры соответственно меняют .

5. Современные производства

Сравнительно невысокие мировые цены на нефть, незначительно колеблющиеся около $20 (в пересчете на стоимость доллара США 2008 года) после второй мировой войны до 70-х годов 20 века , долгое время делали строительство крупных производств, основанных на синтезе Фишера-Тропша, нерентабельными. Многотоннажные производства синтетических углеводородов из синтез-газа существовали и развивались лишь в ЮАР, однако и это было обусловлено не экономической выгодой, а политической и экономической изоляцией страны при режиме апартеида. И в настоящее время заводы компании Sasol (South African Coal, Oil and Gas Corporation) остаются одними из самых производительных в мире .

В современных условиях предприятия, использующие процесс ФТ, способны рентабельно работать при цене на нефть более $40 за баррель. В случае, если по технологической схеме предусматривается улавливание и хранение либо утилизация углекислого газа, образующегося при синтезе, эта цифра возрастает до $50ч55 . Так как мировые цены на нефть не опускались ниже этих отметок с 2003 года , строительство крупных предприятий по производству синтетических углеводородов из синтез-газа не заставило себя ждать. Примечательно, что большинство проектов осуществляется в Катаре, богатым природным газом.

Ниже описаны крупнейшие действующие и строящиеся предприятия GTL (Gas to liquid, «газ в жидкость»), основанные на синтезе ФТ.

5.1 Sasol 1, 2, 3. PetroSA

Южноафриканской компанией Sasol накоплен огромный опыт в промышленном применении синтеза ФТ. Первый пилотный завод Sasol 1 был пущен в 1955 году, сырьем для которого служит синтез-газ, получаемый методом газификации угля. Ввиду действия торговых эмбарго в отношении ЮАР в 50-х - 80-х годах 20 века, для обеспечения страны энергоносителями в 1980 и 1984 годах были введены в строй два более крупных производства - Sasol 2 и Sasol 3 .

Помимо этого компания Sasol является лицензиаром процесса GTL для южноафриканской государственной нефтяной компании PetroSA. Ее предприятие, также известное как Mossgas, работает с 1992 года. Сырьем является природный газ, добываемый в открытом море .

На протяжении многолетней эксплуатации производств Sasol инженеры компании стремились улучшить технологию синтеза, в работе были опробованы все четыре типа реакторов, описанных в разделе 4, начиная с многотрубных реакторов, работающих при атмосферном, а позже при повышенном давлении, и заканчивая барботажными реакторами.

Предприятия Sasol поставляют на рынок как моторные топлива, так и сырье для нефтехимии (олефины, спирты, альдегиды, кетоны и кислоты, а также фенол, крезолы, аммиак и серу) .

5.2 Oryx

Данное предприятие введено в эксплуатацию в 2007 году в Катаре. Лицензиаром выступили совместно компании Sasol и Chevron, сформировав международное совместное предприятие Sasol Chevron Limited.

Исходный природный газ подвергается паровому риформингу, после чего полученный синтез-газ подается в барботажный реактор, где проходит низкотемпературный ФТ-синтез. Продукты синтеза подвергаются гидроочистке и гидрокрекингу.

Товарными продуктами являются экологически чистое дизельное топливо (менее 5 ppm серы, менее 1% ароматических углеводородов, цетановое число около 70), а также нафта, используемая как сырье для пиролиза .

5.3 SMDS

Компания Shell в 1993 году ввела в эксплуатацию свой завод Shell MDS (Middle Distillate Synthesis, синтез средних дистиллятов) в Малайзии. В основе процесса лежит современная модификация процесса ФТ. Синтез-газ для проведения реакции ФТ получают парциальным окислением природного газа. Процесс осуществляется в многотрубных реакторах, заполненных высокопроизводительным катализатором. Продукты синтеза (преимущественно высокомолекулярные алканы) подвергаются гидрокрекингу и гидроизомеризации.

Производство направлено на получение высококачественных синтетических дизельного топлива и керосина, а также парафинов .

5.4 Pearl

Предприятие Pearl включает в себя крупнейшее в мире производство GTL, созданное компанией Shell совместно с Qatar Petroleum. Первая очередь комплекса пущена в мае 2011 года, выход на полную мощность запланирован на 2012 год . Технологический процесс, в общем, является развитием технологий, используемых на заводе SMDS. Цепочка процессов идентична: природный газ, добытый на шельфовых месторождениях, подвергается частичному окислению с получением смеси Н 2 и СО; затем синтез-газ претерпевает превращения в многотрубных реакторах (24 аппарата) в парафины с длинной цепью. Последние в результате гидрокрекинга и разделения дают товарные продукты: моторные топлива, нафту (сырье для нефтехимии), а также в роли побочных продуктов базовые смазочные масла и парафины .

5.5 Escravos

Данный GTL-проект, осуществляемый в Нигерии, изначально разрабатывался совместно Sasol и Chevron Corporation, как и Oryx. Однако из-за существенно возросших затрат на осуществление проекта Sasol покинул его. В настоящий момент предприятие строится с участием Chevron Nigeria Limited и Nigerian National Petroleum Company. Ввод в эксплуатацию завода запланирован на 2013 год. Исходным сырьем является природный газ. Собственно ФТ-синтез будет осуществляться в барботажных реакторах. Отличительной чертой технологической схемы является использование фирменного процесса ISOCRACKING компании Chevron, благодаря которому крекируются до легких и средних дистиллятов и облагораживаются синтетические парафины - продукты ФТ-синтеза.

Товарной продукцией являются моторные топлива (в первую очередь дизельное), нафта, а также кислородосодержащие продукты - метанол и диметиловый эфир .

В таблицу 9 сведена общая информация об описанных выше производствах синтетических углеводородов .

Таблица 9 - Современные мощности GTL в мире

Компания

Разработчик технологии

Место расположения

Мощность, баррелей / сутки

Сасолбург, ЮАР

Секунда, ЮАР

Petro SA

(бывший Mossgas)

Моссел Бей, ЮАР

Бинтулу, Малайзия

Эскравос, Нигерия

34000 (проект)

Рас Лаффан, Катар

Рас Лаффан, Катар

Кроме этого, перспективным является строительство заводов ФТ-синтеза в Алжире (до 33 тыс. баррелей в день) и Иране (до 120 тыс. баррелей в день).

Имеется информация о совместной разработке Sasol и норвежской Statoil установок, расположенных на морских платформах или даже плавучих заводов по переработке природного и попутного газа в жидкие углеводороды. Однако про осуществление этого проекта ничего не известно .

Разработан базовый проект и ведутся дальнейшие переговоры по строительству в Узбекистане завода GTL. На нем планируется перерабатывать метан, производимый Шуртанским газохимическим комплексом, по технологии компаний Sasol и Petronas .

Компании ExxonMobil, Syntroleum, ConocoPhillips занимаются исследованиями в области GTL-процессов, однако, эти фирмы пока имеют в своем распоряжении лишь пилотные установки, используемые для исследовательских целей .

Заключение

Синтез Фишера-Тропша позволяет получать из природных горючих ископаемых, используемых в настоящее время преимущественно как топливо для тепло- и электростанций (уголь, природный газ) или вовсе сжигаемых на факелах либо выбрасываемых в атмосферу (попутный нефтяной газ), высококачественные моторные топлива и ценное сырье для последующего химического синтеза. Преимущественно по первому пути идет развитие технологий компании Shell, процессы же фирмы Sasol сочетают оба направления. На рисунке 8 представлены возможные варианты переработки первичных продуктов ФТ-синтеза.

Рисунок 8. Направления переработки синтетических углеводородов.

Качество получаемого в процессе ФТ по технологии Sasol Chevron дизельного топлива представлено в таблице 10 .

Таблица 10 - Характеристика синтетического ДТ

Характеристика

Синтетическое ДТ

Требования стандарта

Плотность при 15єС, кг/м 3

Температура выкипания 95% фракции, єС

Кинематическая вязкость при 40єС, мм 2 /с

Температура вспышки, єС

Цетановое число

Температура помутнения

Удачный либо неудачный опыт эксплуатации современных GTL-производств, в первую очередь Pearl - самого современно и крупного GTL-предприятия - вероятно определит будущее развитие технологии и заводов, использующих процесс ФТ. У GTL-технологии, помимо нестабильных цен на нефть, есть другие существенные проблемы.

Первая из них - очень высокая капиталоемкость. По расчетам, вложение в завод производительностью 80 тыс. баррелей синтетических углеводородов в день, исходным сырьем для которого является уголь, составляют от $7 млрд. до $9 млрд. Для сравнения: НПЗ такой же производительности обойдется в $2 млрд. Большая часть капитальных затрат (60ч70%) приходится на комплекс получения синтез-газа . Реальные цифры подтверждают расчеты: затраты на возводимый в Нигерии Escravos GTL с запланированных $1,7 млрд. поднялись до $5,9 млрд. Строительство Pearl GTL обошлось Shell в $18-19 млрд. Осуществление в Катаре грандиозного проекта по строительству GTL-завода мощностью 154 тыс. баррелей в сутки синтетических углеводородов было отклонено фирмой-разработчиком Exxon Mobil. В проект планировалось инвестировать $7 млрд., чего явно оказалось бы недостаточно. Однако компания объяснила отказ от проекта «перераспределением ресурсов» в пользу строительства газоперерабатывающего предприятия Barzan, также расположенного в Катаре .

Другой весомой проблемой является влияние на экологию. Как показано в разделе 1, в процессе ФТ образуется диоксид углерода, который является парниковым газом. Как считается, выбросы СО 2 являются причиной глобальных климатических изменений, и количество выбрасываемого диоксида углерода ограничивается квотами на выбросы парниковых газов. В цепочке добыча-переработка-потребление для синтетических моторных топлив выбросы углекислого газа примерно вдвое превышают таковые для нефтяных топлив . Существуют различные технологии по утилизации углекислого газа (от хранения в подземных резервуарах до закачки в газо- или нефтеносный пласт), но они существенно удорожают и без того недешевые GTL-проекты. Однако стоит отметить, что другие вредные выбросы от непосредственно сгорания синтетических топлив в ДВС на 10ч50% ниже, чем для нефтяных топлив (таблица 11) .

Таблица 11 - Вредные выбросы при сгорании синтетического и традиционного ДТ

К экологической же проблеме можно отнести потребность в большом количестве воды для осуществления газификации угля, если последний используется в качестве исходного сырья. Зачастую климат в странах, богатых углем, но бедных нефтью, является засушливым. Однако на второй стадии GTL-производства - собственно синтез ФТ - вода является побочным продуктом, который после очистки можно использовать в технологическом процессе. Такая методика используется на заводе Pearl. Так как для получения синтез-газа на этом предприятии вода не нужна, она используется для выработки пара высокого давления при охлаждении реакторов ФТ. Получаемый водяной пар приводит компрессоры и электрогенераторы .

Рынок GTL является растущим рынком. Основными факторами, движущими этот рынок, являются настоятельная потребность в монетизации трудно утилизируемых другими способами (трубопроводным транспортом или сжижением) больших запасов природного, попутного нефтяного газа и газа угольных месторождений на фоне все возрастающей мировой потребности в жидких углеводородах и ужесточающихся требованиях к экологическим характеристикам углеводородного топлива. Освоение GTL-технологий является хорошей рыночной возможностью для тех стран и компаний, которые располагают большими запасами природного или попутного газа и угля. GTL-производства могут не конкурировать, а дополнять такие направления в отрасли, как LNG (Liquefied natural gas, сжиженный природный газ), производства экологически чистых топлив, высококачественных базовых масел.

Список использованных источников

1. Химические вещества из угля. Пер. с нем. /Под ред. И.В. Калечица - М.: Химия, 1980. - 616 с, ил.

2. Караханов Э.А. Синтез-газ как альтернатива нефти. II. Метанол и синтезы на его основе // Соросовский образовательный журнал. - 1997. - №12. - С. 68.

3. The Early Days of Coal Research [Электронный ресурс]. - Режим доступа: http://www.fe.doe.gov/aboutus/history/syntheticfuels_history.html

4. Процесс Фишера - Тропша [Электронный ресурс]. - Режим доступа: http://ru.wikipedia.org/wiki/Процесс_Фишера_-_Тропша

5. Обзор катализаторов синтеза Фишера-Тропша [Электронный ресурс]. - Режим доступа: http://www.newchemistry.ru/letter.php? n_id=7026&cat_id=5&page_id=1

6. Dry M.E. Applied Catalysis A: General. - 2004. - №276, - Р. 1.

7. 11. Сторч Г., Голамбик Н., Голамбик Р. Синтез углеводородов из окиси углерода и водорода. - М.: И.Л., 1954. - С. 257.

8. Lee W.H., Bartolomew C.H.J. Catal. - 1989. - №120. - Р. 256.

9. Wisam Al-Shalchi. Gas to liquids technology (GTL). - Baghdad - 2006.

10. Нефть [Электронный ресурс]. - Режим доступа: http://ru.wikipedia.org/wiki/Нефть

11. Matthew Dalton. Big Coal Tries to Recruit Military to Kindle a Market. // The Wall Street Journal. - 2007. - Sept. 11.

12. Explore Sasol - Sasol history [Электронный ресурс]. - Режим доступа: http://www.sasol.com/sasol_internet/frontend/navigation.jsp? navid=700006&rootid=2

13. The PetroSA GTL Refinery & LTFT Technology Development [Электронный ресурс]. - Режим доступа: http://www.petrosa.co.za/

14. Oryx GTL [Электронный ресурс]. - Режим доступа: http://www.oryxgtl.com/Englishv3/index.html

15. Shell MDS Technology and Process [Электронный ресурс]. - Режим доступа: http://www.shell.com.my/home/content/mys/products_services/solutions_for_businesses/smds/process_technology/

16. Inside Shell"s Bintulu GTL Plant [Электронный ресурс]. - Режим доступа: http://www.consumerenergyreport.com/2010/11/14/inside-shells-bintulu-gtl-plant/

17. First cargo of Pearl GTL products ship from Qatar [Электронный ресурс]. - Режим доступа: http://www.shell.com/home/content/media/news_and_media_releases/2011/first_cargo_pearl_13062011.html

18. Gas-to-liquids (GTL) processes [Электронный ресурс]. - Режим доступа: http://www.shell.com/home/content/innovation/meeting_demand/natural_gas/gtl/process/

19. Escravos Gas-to-Liquids Project, Niger Delta [Электронный ресурс]. - Режим доступа: http://www.hydrocarbons-technology.com/projects/escravos/

20. Обзор рынка GTL [Электронный ресурс]. - Режим доступа: http://www.newchemistry.ru/letter.php? n_id=5331

21. Узбекистан развивает сотрудничество с компаниями «Сасол» и «Петронас» [Электронный ресурс]. - Режим доступа: http://www.anons.uz/article/politics/5042/

22. Жемчужина GTL [Электронный ресурс]. - Режим доступа: http://www.rupec.ru/blogs/? ID=3048

23. Exxon Mobil, Qatar Unplug GTL Project [Электронный ресурс]. - Режим доступа: http://www.imakenews.com/lng/e_article000760746.cfm? x=b96T25P, bd1Rfpn

Размещено на Allbest.ru

Подобные документы

    Изучение жидкофазного окисления насыщенных углеводородов. Процесс распада промежуточных гидроперекисей на радикалы. Процесс окисления солями металлов переменной валентности. Механизм воздействия состава радикалов на скорость сложной цепной реакции.

    реферат , добавлен 13.03.2010

    Общее понятие о катализаторах. Современные тенденции в разработке и использовании новых катализаторов гидрирования. Разновидности дегидрирующего действия катализаторов. Процесс дегидрирования и природа активной поверхности катализаторов дегидрирования.

    курсовая работа , добавлен 21.10.2014

    Изучение основных функций, свойств и принципа действия катализаторов. Значение катализаторов в переработке нефти и газа. Основные этапы нефтепереработки, особенности применения катализаторов. Основы приготовления твердых катализаторов переработки нефти.

    реферат , добавлен 10.05.2010

    В органическом синтезе в реакциях гидрирования участвуют любые молекулы, имеющие ненасыщенные связи. Синтезы Фишера-Тропша. Обратная гидрированию реакция - процесс дегидрирования в промышленном органическом синтезе и в процессах нефтепереработки.

    реферат , добавлен 28.01.2009

    Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.

    реферат , добавлен 27.02.2014

    Восстановление СО на гетерогенных металлосодержащих катализаторах приводит к образованию различных продуктов – СН4. Синтезы углеводородов по Фишеру-Тропшу и метанола. Реакции образования углеводородов из СО и Н2 являются экзотермическими процессами.

    реферат , добавлен 28.01.2009

    История исследования реакций между аминокислотами и сахарами. Механизм образования меланоидинов, предложенный Дж. Ходжем. Факторы, влияющие на реакцию меланоидинообразования. Применение ингибирования для подавления реакции потемнения в пищевых продуктах.

    реферат , добавлен 19.03.2015

    Обоснование метода производства хлорной кислоты, факторы, влияющие на его выбор. Характеристика исходного сырья и готового продукта. Описание необходимого оборудования. Порядок и этапы проведения технологических расчетов, механизм составления баланса.

    курсовая работа , добавлен 05.02.2017

    Понятие биологических катализаторов, действие ферментов в живых системах и их классификация. Факторы, влияющие на активность биологических катализаторов. Вещества, называющиеся коферментами. Кинетика ферментативного катализа, уравнение Михаэлиса-Ментена.

    презентация , добавлен 03.04.2014

    Сущность алканов (насыщенных углеводородов), их основные источники и сферы применения. Строение молекул метана, этана, пропана и бутана. Особенности промышленных и лабораторных методов синтеза алканов. Механизм галогенирования, горения и пиролиза.

Метод Фишера - Тропша по превращению метана в более тяжелые углеводороды был разработан в 1923 г. и реализован в промышленности Германии в 1940-х годах.

Почти все авиационное топливо в этой стране во время второй мировой войны производилось с помощью синтеза Фишера - Тропша из каменного угля. Впоследствии от этого способа изготовления моторных топлив отказались, так как топливо, получаемое при переработке нефти, до последнего времени было экономически более выгодным.

При получении жидкого топлива на основе синтеза Фишера - Тропша разнообразные соединения углерода (природный газ, каменный и бурый уголь, тяжелые фракции нефти, отходы деревообработки) конвертируют в синтез-газ (смесь СО и Н2), а затем он превращается в синтетическую «сырую нефть» - синтнефть. Это - смесь углеводородов, которая при последующей переработке разделяется на различные виды практически экологически чистого топлива, свободного от примесей соединений серы и азота. Достаточно добавить 10% искусственного топлива в обычное дизельное, чтобы продукты сгорания дизтоплива стали соответствовать экологическим нормам.

Еще более эффективной представляется конверсия газа в дорогостоящие продукты тонкого органического синтеза.

Конверсию газа в моторное топливо можно в целом представить как превращение метана в более тяжелые углеводороды:

2nСН4 + 1/2nО2 = Сn Н2n + nН2 О

Из материального баланса брутто-реакции следует, что массовый выход конечного продукта не может превышать 89%.

Реакция напрямую неосуществима. Конверсия газа в жидкое топливо (КГЖ) проходит через ряд технологических стадий (рис.17). При этом в зависимости от того, какой конечный продукт необходимо получить, выбирается тот или иной вариант процесса.

Синтез Фишера-Тропша может рассматриваться как реакция восстановительной олигомеризации монооксида углерода, при которой образуются углерод-углеродные связи, и в общем виде она представляет собой сложную комбинацию ряда гетерогенных реакций, которую можно представить суммарными уравнениями:

nCO + 2nH2 > (CH2)n + nH2 O,

2nCO + nH2 > (CH2)n + nCO2 .

Рис. 17.

Продуктами реакции являются алканы, алкены и кислородсодержащие соединения, то есть образуется сложная смесь продуктов, характерная для реакции полимеризации. Первичными продуктами синтеза Фишера-Тропша являются a- и b-олефины, которые превращаются в алканы в результате последующего гидрирования. Природа применяемого катализатора, температура, соотношение СО и Н2 существенно сказываются на распределении продуктов. Так, при использовании железных катализаторов велика доля олефинов, тогда как в случае кобальтовых катализаторов, обладающих гидрирующей активностью, преимущественно образуются насыщенные углеводороды.

В настоящее время в качестве катализаторов синтеза Фишера-Тропша в зависимости от поставленных задач (повышение выхода бензиновой фракции, увеличение выхода низших олефинов и др.) используются как высокодисперсные железные катализаторы, нанесенные на оксиды алюминия, кремния и магния, так и биметаллические катализаторы: железо-марганцевые, железо-молибденовые и др.

За 70 лет с момента открытия синтеза не утихают споры по поводу механизма реакции. В настоящее время рассматриваются три различных механизма. Первый механизм, называемый карбидным, впервые предложенный Фишером и Тропшем и в дальнейшем нашедший поддержку у других исследователей, предполагает образование С-С-связей в результате олигомеризации метиленовых фрагментов на поверхности катализатора. На первой стадии происходит адсорбция СО и образуется поверхностный карбид, а кислород превращается в воду или СО2:

На второй стадии поверхностный карбид гидрируется с образованием фрагментов СНx (х = 1-3):

Удлинение цепи происходит в результате реакции поверхностных метила и метилена и далее путем внедрения метиленовых групп идет рост цепи:

Стадия обрыва цепи происходит в результате десорбции алкена с поверхности катализатора.

Второй механизм, названный гидроксикарбеновым, предполагает также гидрирование координированного на металле СО с образованием поверхностных гидроксикарбеновых фрагментов, в результате конденсации которых и происходит образование С-С-связей:

Третий механизм, который можно назвать механизмом внедрения, предполагает образование С-С-связей в результате внедрения СО по связи металл-углерод (о способности СО к внедрению по связи металл-алкил говорилось выше):

Накоплен достаточно богатый экспериментальный материал, свидетельствующий в пользу того или иного варианта механизма, однако приходится констатировать, что к настоящему моменту невозможно сделать однозначный выбор между ними. Можно предположить, что в связи с большой важностью синтеза Фишера-Тропша исследования в этом направлении будут интенсивно продолжаться и мы станем свидетелями новых воззрений на механизмы протекающих реакций .

Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Синтез-газ - устойчивое выражение, появившееся еще в XIX веке, которым начали обозначать тогда продукт углехимии, представляющий собой смесь оксида углерода (угарного газа) и водорода. Так как из этой газовой смеси можно получать при помощи разных реакций самые разные синтетические продукты, а тут такое название, синтез-газ. Оно такое абсолютно на всех языках. Некоторые сокращают. Англичане говорят syngas . В русском технологическом языке такой традиции нет.

В 1919 году немецкие ученые обнаружили, что если использовать в качестве катализаторов металлы 8-й группы, то при температурах в районе 200 °C (плюс-минус 100 °C) можно получать смеси жидких углеводородов. Сразу было понятно, что это большое открытие и оно позволяет получать углеводородное топливо не из нефти. Для Германии после Первой мировой войны это было особенно важно. Страна находилась, как бы сейчас сказали, под жесткими санкциями. Своей нефти в Германии не было. А уж когда к власти в этой стране пришли нацисты и начали готовиться к войне, стимул стал чрезвычайно острым. Поэтому эти работы были очень серьезно поддержаны германским правительством. В результате в 1919 году было сделано открытие, а в 1934 году уже работал первый промышленный завод, а в 1938-м - еще четыре. И во время Второй мировой войны значительная часть потребностей Германии, а заодно и Японии в топливе удовлетворялась эрзац-топливом, полученным по методу Фишера - Тропша. Скорее всего, из-за этого печального факта эти замечательные ученые так Нобелевскую премию и не получили: слишком хорошо сработали.

Надо сказать, что процесс в том виде, в каком он был изобретен, в каком он был внедрен в промышленность Германии в 1930-е годы, сегодня не смог бы получить одобрения ни одной компании, ни одной группы по одобрению бизнес-планов: он был отвратителен, побочных реакций протекало на этих катализаторах огромное количество, сотни. В результате этих побочных реакций получалось большое количество продуктов. Классический завод первого поколения производил 74 продукта, то есть это целый химический город. Это очень много. И ведь каждый продукт нужно отделить, очистить, привести в продаваемую форму. А среди этих форм - стиральный порошок, мыло, растворители, чистящие средства, всевозможные пластификаторы для полимеров - все это очень нужные вещи. Но представьте себе, что перед вами как перед государственным деятелем или как перед бизнесменом стоит задача получить бензин, дизельное топливо, а тут на вас навешивают еще 71 продукт.

Это тяжело, во все это нужно вкладывать деньги. Поэтому ничего удивительного в том нет, что сразу после поражения Германии и Японии во Второй мировой войне эта промышленность умерла, потому что она не могла никак конкурировать с обычной нефтеперегонкой. Тем более в мире начался нефтяной бум, была открыта дешевая нефть Ближнего Востока, а за ней и другие доступные нефтяные месторождения. Одно, правда, было исключение, очень интересное, а именно: группа немецких ученых переехала в Южно-Африканскую Республику, а Южная Африка, отделившись, как тогда англичане полагали, незаконно от Британской империи, попала в ситуацию вновь политических санкций, эмбарго, тем более там стали развиваться такие неприятные вещи, как апартеид против черного населения, ухудшился доступ к нефтяным ресурсам, и поэтому правительство учредило компанию «Южноафриканская синтетическая нефть». Эта компания живет и здравствует по сей день. Она обеспечила в 1950-е годы развертывание промышленности синтетического топлива и процесса Фишера - Тропша на новом уровне в Южной Африке.

Это было второе поколение этого процесса, уже более интересное, не такое медленное, порождающее не так много побочных продуктов, как первое. Там даже тип химических реакторов был другой. Если в первом поколении применялись кожухотрубные реакторы, то есть катализатор в виде гранул насыпался внутрь реакционных труб и через эти трубы пропускался газ, то во втором поколении уже применялся так называемый кипящий слой. Кстати, гранулы кипели, поддерживаемые очень мощным потоком сырьевого газа снизу. Существенно лучше было это второе поколение, но вновь, как видите, мотивация для того, чтобы оно применялось, была чисто политическая. Был бы у Южно-Африканского Союза нормальный доступ к нефти, никогда бы они этим не занимались. Однако сохранилась компетенция, сохранился научно-технический потенциал и даже перешел на новый уровень.

Третье поколение технологий появилось в связи с нефтяным мировым кризисом 1973 года.

Арабские страны наложили нефтяное эмбарго против стран Запада, и здесь уже интересный эффект: западный мир, где немалую роль уже играли тогда транснациональные корпорации, использовал не государственный механизм, а именно эти корпорации как мотор для нового развития этих технологий. Крупные нефтяные компании изучили опыт южноафриканской компании Sasol и в течение 1970-х - начала 1980-х годов срочно создали третье поколение этих технологий. Это поколение царствует в промышленности по сей день. Оно очень интересное. Количество побочных продуктов у него уменьшилось: оно оставляет около 30, а в лучших своих проявлениях всего-навсего 14. Оно любопытно тем, что катализаторы, которые используются в технологиях третьего поколения, производят не смесь относительно легких и жидких углеводородов, как это делали первое и второе поколения, а так называемые воски, твердые парафины, то есть такие длинноцепочечные углеводороды, что они не являются жидкими в обычных условиях, они твердые, как свечка. Собственно говоря, в том числе и для свечек их используют. Это порождает некоторые дополнительные проблемы, потому что эти твердые вещества надо подвергать дальнейшей обработке, гидрокрекингу, рвать эти слишком длинные цепочки. Но в общетехнологическую логику, которую выстроили авторы технологии третьего поколения, все это прекрасно укладывается. И лидерами этих технологий оказались голландская компания Shell и все та же южноафриканская компания Sasol . Им принадлежат три завода в Южной Азии, где на сегодняшний день наиболее дешевый и доступный газ. И они прекрасно работают.

Очень любопытно, что все это время, пока в Южной Африке развивалось второе поколение, а на Западе - третье, в Советском Союзе 40 лет успешно работал завод первого поколения в Новочеркасске, привезенный по репарациям из Германии. Он до сих пор существует, хотя был остановлен в 1994 году. Хорошо бы из него сделать музей. Так вот, технологии третьего поколения все еще уступают нефтеперерабатывающим заводам - уже немного, но уступают. При наличии выбора у здравого инвестора будет всегда только одно решение: делать бензин или дизельное топливо из нефти. И вот в начале XXI века ряд научных групп в разных странах, в том числе у нас, начал работать над реализацией четвертого поколения, которое отличается тем, что каждая гранула катализатора в нем - это не просто носитель активного металла, а это самая настоящая многофункциональная фабрика, которая делает всё: она делает первичный синтез Фишера - Тропша, получает воск, проводит разбиение на части, группирует по фракциям и получает настоящее последнее топливо. Уже в 2016–2017 годах запланированы к пуску первые небольшие промышленные заводы этого четвертого поколения. И надо сказать, что и в третьем, и в четвертом поколении, так как продукт синтетический и топливо получается разбиением длинных цепочечных молекул, а для того, чтобы катализатор работал, нужно очистить газ от всевозможных примесей, синтетическая нефть получается, как говорят, премиального качества: без ядовитых примесей, без технологически тяжелых компонентов, без смол. И такой продукт является, как я полагаю, будущим отечественного и мирового транспорта и энергетики на весьма долгие годы.

Синтез Ф.Фишера-Г.Тропша можно рассматривать как восстановитель­ную олигомеризацию оксида углерода на гетерогенных катализаторах, ведущую к образованию смеси различных алкенов и алканов.

В качестве катализаторов использовались кобальт, железо, рутений, промотированные различными добавками. Состав продуктов зависит от природы катализатора, условий реакции и изменяется в очень широких пределах. При взаимодействии СО и Н 2 на кобальте, осажденном на ки­зельгуре и содержащем в качестве промоторов диоксид тория ТhО 2 и МgO, при 200°С и давлении 1-1,5 МПА (10-15 атм) получается около 80% парафинов нормального строения, 15% неразветвленных алкенов и около 5% разветвленных алканов. Получающаяся смесь углеводородов состоит из 45% низкого качества бензина, 23% дизельного топлива, 3% машинного масла и 27% высших твердых парафинов. Во время второй мировой войны этим способом в Германии и Японии осуществлялся синтез моторного топ­лива. Общая мощность производства в 1943-1944 годах достигала 1 млн тонн в год. Более дешевые и доступные железные катализаторы активны и стабильны в широком интервале температур и давлений. На осажденных железных катализаторах, содержащих SiO 2 , К 2 О и медь, получают смесь бензина (32%), 20% дизельного топлива и высших парафинов (48%), причем их соотношение меняется с изменением температуры. Бензин, получаемый на железных катализаторах, имеет лучшие моторные характеристики, чем бензин, производимый на кобальтовых катализаторах. Для получения высокомолекулярных парафинов ("полиметилена") - линейных алканов с молярной массой до 10 6 эффективным оказался мелкодисперсный рутений

при 150-200 о и давлении до 1000-2000 атм. Твердый парафин, называемый церезином, находит ограниченное применение в микробиологической и медицинской промышленности.

После окончания второй мировой войны установки по производству бензина и дизельного топлива по Фишеру-Тропшу в Европе и Японии были демонтированы из-за высокой себестоимости угля как источника топлива и высокой себестоимости процесса Фишера-Тропша. В настоящее время промышленное производство бензина и дизельного топлива этим мето­дом осуществляется только в Южной Африке, не имеющей собственных неф­тяных ресурсов и доступа к мировым источникам нефти. Добыча нефти, со­гласно предварительным оценкам, достигнет апогея в начале XXI столетия и затем начнет непрерывно уменьшаться. В перспективе добыча угля должна превзойти добычу нефти, и синтез углеводородов различных классов станет базироваться на угле. Несомненно, однако, что техно­логия получения жидкого топлива из угля в будущем будет принципиально иной, чем в процессах Фишера-Тропша.

28.8.3. Производство метанола

Производство метанола на основе синтез-газа впервые было осу­ществлено в Германии в начале 1920-х годов.

Первоначально в качестве катализатора использовали смесь ZnO и Cr 2 O 3 , а саму реакцию проводили при 350-400° и высоком давлении до 300 атм. Это обеспечивало 10-15%-ную конверсию синтез-газа в метанол, в резуль­тате рециркуляции выход может быть повышен до 85%. Условия проведения процесса и аппаратура в этом случае такие же, как и при синтезе амми­ака, поэтому производства метанола и аммиака часто объединяют (азотно-туковые заводы).

В 1960 году фирма ICI разработала процесс, где в качестве ката­лизатора используется смесь CuO и ZnO, нанесенная на глинозем.

В настоящее время основное количество метанола получают каталитическим гидрированием СО при низком давлении на медно-цинковом катализаторе.

Традиционные, давно сформировавшиеся направления использования метанола заключаются в получении формальдегида, метиламинов, метилхлорида, метил-трет -бутилового эфира, диметилтерефталата. Около 40% производимого метанола превращают в формальдегид в результате дегид­рирования или окисления.

Дегидрирование метанола эндотермично, а окисление сопровождается вы­делением тепла, поэтому в промышленности, как правило, объединяют оба эти процесса. Смесь воздуха и метанола, взятого с большим из­бытком, пропускают над серебром при 600-650°. Газы, вы­шедшие из реактора, охлаждают и растворяют в воде. Метанол отделя­ют и рециркулируют, выход формальдегида составляет 86-90%. Формаль­дегид получают в виде 37%-ного раствора в воде. Формальдегид находит применение в производстве феноло-формальдегидных смол.

При взаимодействии метанола в аммиаком при 350-500 о С и давлении 20 атм в присутствии Аl 2 O 3 происходит образование смеси метил-, диметил- и триметиламина.

Метилхлорид образуется при взаимодействии метанола и хлороводорода в газовой фазе при 300 о С в присутствии ZnCl 2 или CuCl 2 как катали­затора.

Производство диметилтерефталата и метил-трет -бутилового эфира описа­но в других разделах этой главы.

В последние двадцать лет отчетливо проявляется большой и все возрастающий интерес к метанолу как исходному реагенту для самых разнообразных химических превращений. Этот интерес вызван тем, что он дешев и может быть получен практически из любого углеродсодержащего источника - нефти, газа, угля, торфа и даже бытового мусора, которые можно превратить в смесь СО и Н 2 . Из метанола в промышленных условиях может быть получено большое число практически важных ве­ществ с применением как гетерогенного, так и в особенности гомоген­ного катализа. Перечислим только некоторые наиболее перспективные направления производства на основе метанола. Это производства уксус­ной кислоты, уксусного ангидрида, этанола, этиленгликоля, метилметакрилата, метилформиата, диметилформамида, некоторых видов топлива и т.д. Некоторые из них уже эксплуатируются в промышленном масштабе, другие находятся в стадии внедрения, а остальные разрабатываются большим числом исследовательских групп и найдут применение, по-види­мому, в недалеком будущем. Возможно, в XXI столетии метанол, наряду с этиленом, станет одним из главных полупродуктов крупнотоннажного органического синтеза.

Понравилась статья? Поделитесь ей