Контакты

Презентация на тему "шкала электромагнитных излучений". Низкочастотные волны Презентация на тему шкала электромагнитных излучений

«Волны в океане» - Разрушительные последствия Цунами. Движение земной коры. Изучение нового материала. Узнать объекты на контурной карте. Цунами. Длина в океане до 200 км, а высота 1 м. Высота Цунами у берега до 40 м. Г.Пролив. В.Залив. Ветровые волны. Приливы и отливы. Ветер. Закрепление изученного материала. Средняя скорость Цунами 700 – 800 км/час.

«Волны» - «Волны в океане». Распространяются со скоростью 700-800км\ч. Угадай, какой внеземной объект вызывает приливы и отливы? Наибольшие приливы в нашей стране – на Пенжинской губе в Охотском море. Приливы и отливы. Длинные пологие волны, без пенистых гребней, возникающие в безветренную погоду. Ветровые волны.

«Сейсмические волны» - Полное разрушение. Ощущается почти всеми; многие спящие просыпаются. Географическое распространение землетрясений. Регистрация землетрясений. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. Меняется уровень воды в колодцах. На земной поверхности видны волны. Общепринятого объяснения таких явлений пока нет.

«Волны в среде» - То же относится к газообразной среде. Процесс распространения колебаний в среде называется волной. Следовательно, среда должна обладать инертными и упругими свойствами. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

«Звуковые волны» - Процесс распространения звуковых волн. Тембр является субъективной характеристикой восприятия, в целом отражающей особенность звука. Характеристики звука. Тон. Рояль. Громкость. Громкость – уровень энергии в звуке – измеряется в децибелах. Звуковая волна. На основной тон, как правило, накладываются дополнительные тоны (обертоны).

«Механические волны 9 класс» - 3.По природе волны бывают: А. Механическими или электромагнитными. Плоская волна. Объясните ситуацию: Всё описать не хватит слов, Весь город перекошенный. В тихую погоду - нет нас нигде, А ветер подует - бежим по воде. Природа. Что «движется» в волне? Параметры волны. В. Плоскими или сферическими. Источник совершает колебания вдоль оси OY перпендикулярно ОХ.

Радиоволны Получаются с помощью колебательных контуров и микроскопических вибраторов. Получаются с помощью колебательных контуров и микроскопических вибраторов. радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции. Применение: Радиосвязь, телевидение, радиолокации. Свойства:


Инфракрасное излучение(тепловое) Излучается атомами или молекулами веществ. проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фотопластинки); поглощаясь веществом, нагревает его; невидимо; способна к явлениям интерференции и дифракции; регистрируется тепловыми методами. Свойства: Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов.




1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способност" title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубами. Излучается всеми твёрдыми телами, у которых t>1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способност" class="link_thumb"> 5 Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубами. Излучается всеми твёрдыми телами, у которых t>1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека(загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ. Применение: в медицине, в промышленности. 1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способност"> 1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека(загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ. Применение: в медицине, в промышленности."> 1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способност" title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубами. Излучается всеми твёрдыми телами, у которых t>1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способност"> title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубами. Излучается всеми твёрдыми телами, у которых t>1000°С, а также светящимися парами ртути. Свойства: высокая химическая активность, невидимо, большая проникающая способност">


Рентгеновские лучи Источники: Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решётке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Применение: в медицине с целью диагностики заболеваний внутренних органов, в промышленности для контроля внутренней структуры различных изделий.


Гамма- излучение Источники: атомное ядро (ядерные реакции) Свойства: имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Применение: в медицине, производстве (гамма - дефектоскопия) Применение: в медицине, производстве (гамма - дефектоскопия)


8


9


10


11 Радиоволны Длина волны(м) Частота(Гц) СвойстваРадиоволны по-разному поглащаются и отражаются средами проявляют свойства интерференции и дифракции. Источник Колебательный контур Макроскопические вибраторы История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги ПрименениеСверхдлинные- Радионавигация, радиотелеграфная связь, передача метеосводок Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация Средние- Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация Короткие- радиолюбительская связь УКВ- космическая радио связь ДМВ- телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение ММВ- радиолокация


12 Инфракрасное излучение Длина волны(м) , Частота(Гц) СвойстваПроходит через некоторые непрозрачные тела, производит химическое действие, невидимо, способно к явлениям интерференции и дифракции, регистрируется тепловыми методами ИсточникЛюбое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания Человек излучает электромагнитные волны длиной м История открытия Рубенс и Никольс (1896 г.), ПрименениеВ криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,


13


14 Видимое излучение Длина волны(м)6, Частота(Гц) СвойстваОтражение, преломление, воздействует на глаз, способно к явлению дисперсии, интерференции, дифракции. Источник Солнце, лампа накаливания, огонь ПриемникГлаз, фотопластинка, фотоэлементы, термоэлементы История открытияМеллони ПрименениеЗрение Биологическая жизнь


15 Ультрафиолетовое излучение Длина волны(м) 3, Частота(Гц) СвойстваВысокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, изменяет развитие клеток, обмен веществ. Источник Входят в состав солнечного света Газоразрядные лампы с трубкой из кварца Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути) История открытия Иоганн Риттер, Лаймен ПрименениеПромышленная электроника и автоматика, Люминисценнтные лампы, Текстильное производство Стерилизация воздуха Медицина


16 Рентгеновское излучение Длина волны(м) Частота(Гц) СвойстваИнтерференция, дифракция на кристаллической решетке, большая проникающая способность ИсточникЭлектронная рентгеновская трубка (напряжение на аноде – до 100 кВ. давление в баллоне – 10-3 – 10-5 н/м2, катод – накаливаемая нить. Материал анодов W,Mo, Cu, Bi, Co, Tl и др. Η = 1-3%, излучение – кванты большой энергии) Солнечная корона История открытия В. Рентген, Милликен ПрименениеДиагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


17 Гамма - излучение Длина волны(м) 3, Частота(Гц) СвойстваИмеет огромную проникающую способность, оказывает сильное биологическое воздействие ИсточникРадиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение История открытия ПрименениеДефектоскопия; Контроль технологических процессов в производстве Терапия и диагностика в медицине

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ Ученица 11 класса Егян Ани

Вся информация от звезд, туманностей, галактик и других астрономических объектов поступает в виде электромагнитного излучения. Электромагнитное излучение

Длины электромагнитных волн радиодиапазона заключены в пределах от 10 км до 0,001 м (1 мм). Диапазон от 1 мм до видимого излучения называется инфракрасным диапазоном. Электромагнитные волны с длиной волны короче 390 нм называются ультрафиолетовыми волнами. Наконец, в самой коротковолновой части спектра лежит излучение рентгеновского и гамма-диапазона.

Интенсивность излучения

Всякое излучение можно рассматривать как поток квантов – фотонов, распространяющихся со скоростью света, равной c = 299 792 458 м/с. Скорость света связана с длиной и частотой волны соотношением c = λ ∙ ν

Энергию квантов света E можно найти, зная его частоту: E = h ν , где h – постоянная Планка, равная h ≈ 6,626∙10 –34 Дж∙с. Энергия квантов измеряется в джоулях или электрон-вольтах: 1 эВ = 1,6∙10 –19 Дж. Кванту с энергией в 1 эВ соответствует длина волны λ = 1240 нм. Глаз человека воспринимает излучение, длина волны которого находится в промежутке от λ = 390 нм (фиолетовый свет) до λ = 760 нм (красный свет). Это – видимый диапазон.

Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g -излучения, вы уже знакомы. Самое коротковолновое g -излучение испускают атомные ядра. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны в конечном счете по их действию на заряженные частицы. Границы между отдельными областями шкалы излучений весьма условны. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Радиоволны

Радиоволны Длина волны(м) 10 5 - 10 -3 Частота(Гц) 3 ·10 3 - 3 ·10 11 Энергия(ЭВ) 1,24 ·10-10 - 1,24 · 10 -2 Источник Колебательный контур Макроскопические вибраторы Приемник Искры в зазоре приемного вибратора Свечение газоразрядной трубки, когерера История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги Применение Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация Короткие - радиолюбительская связь УКВ - космическая радио связь ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение ММВ - радиолокация

Инфракрасное излучение Длина волны(м) 2 ·10 -3 - 7,6· 10 -7 Частота(Гц) 3 ·10 11 - 3 ·10 14 Энергия(ЭВ) 1,24· 10 -2 – 1,65 Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания Человек излучает электромагнитные волны длиной 9 10 -6 м Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки История открытия Рубенс и Никольс (1896 г.), Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

Рентгеновское излучение

Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение. Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Применение: В медицине, производстве (гамма-дефектоскопия). Гамма-излучение

Гамма-излучение зарегистрировано от Солнца, активных ядер галактик, квазаров. Но самое поразительное открытие в гамма- астрономии сделано при регистрации гамма- всплесков. Распределение гамма - вспышек на небесной сфере

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные). Вывод



Низкочастотные колебания

Длина волны (м)

10 13 - 10 5

Частота (Гц)

3 · 10 -3 - 3 · 10 5

Источник

Реостатный альтернатор, динамомашина,

Вибратор Герца,

Генераторы в электрических сетях (50 Гц)

Машинные генераторы повышенной (промышленной) частоты (200 Гц)

Телефонные сети (5000Гц)

Звуковые генераторы (микрофоны, громкоговорители)

Приемник

Электрические приборы и двигатели

История открытия

Оливер Лодж (1893 г.), Никола Тесла (1983)

Применение

Кино, радиовещание (микрофоны, громкоговорители)


Радиоволны

Длина волны(м)

10 5 - 10 -3

Частота(Гц)

3 · 10 5 - 3 · 10 11

Источник

Колебательный контур

Макроскопические вибраторы

Звёзды, галактики, метагалактики

Приемник

Искры в зазоре приемного вибратора (вибратор Герца)

Свечение газоразрядной трубки, когерера

История открытия

Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

Применение

Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

Короткие - радиолюбительская связь

УКВ - космическая радио связь

ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

ММВ - радиолокация


Инфракрасное излучение

Длина волны(м)

2 · 10 -3 - 7,6∙10 -7

Частота (Гц)

3∙10 11 - 3,85∙10 14

Источник

Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

Человек излучает электромагнитные волны длиной 9 · 10 -6 м

Приемник

Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

История открытия

У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

Применение

В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,


Видимое излучение

Длина волны(м)

6,7∙10 -7 - 3,8 ∙10 -7

Частота(Гц)

4∙10 14 - 8 ∙10 14

Источник

Солнце, лампа накаливания, огонь

Приемник

Глаз, фотопластинка, фотоэлементы, термоэлементы

История открытия

М. Меллони

Применение

Зрение

Биологическая жизнь


Ультрафиолетовое излучение

Длина волны(м)

3,8 ∙10 -7 - 3∙10 -9

Частота(Гц)

8 ∙ 10 14 - 3 · 10 16

Источник

Входят в состав солнечного света

Газоразрядные лампы с трубкой из кварца

Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

Приемник

Фотоэлементы,

Фотоумножители,

Люминесцентные вещества

История открытия

Иоганн Риттер, Лаймен

Применение

Промышленная электроника и автоматика,

Люминисценнтные лампы,

Текстильное производство

Стерилизация воздуха

Медицина, косметология


Рентгеновское излучение

Длина волны(м)

10 -12 - 10 -8

Частота(Гц)

3∙10 16 - 3 · 10 20

Источник

Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

Солнечная корона

Приемник

Фотопленка,

Свечение некоторых кристаллов

История открытия

В. Рентген, Р. Милликен

Применение

Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


Гамма - излучение

Длина волны(м)

3,8 · 10 -7 - 3∙10 -9

Частота(Гц)

8∙10 14 - 10 17

Энергия(ЭВ)

9,03 10 3 – 1, 24 10 16 Эв

Источник

Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

Приемник

счетчики

История открытия

Поль Виллар (1900 г.)

Применение

Дефектоскопия

Контроль технологических процессов

Исследование ядерных процессов

Терапия и диагностика в медицине



ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

физическая природа

всех излучений одинакова

все излучения распространяются

в вакууме с одинаковой скоростью,

равной скорости света

все излучения обнаруживают

общие волновые свойства

поляризация

отражение

преломление

дифракция

интерференция


ВЫВОД:

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Данная презентация помогает учителю более наглядно провести урок -лекцию в 11 классе по физике при изучениии темы "Излучения и спектры". Знакомит учащихся с различными видами спектров, спектральным анализом, шкалой электромагнитных излучений.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Излучение и с п е к т р ы Казанцева Т.Р. учитель физики высшей категории МКОУ Луговской СОШ Зонального района Алтайского края Урок – лекция 11 класс

Всё, что видим мы, - видимость только одна, Далеко от поверхности мира до дна. Полагай несущественным явное в мире, Ибо тайная сущность вещей не видна. Шекспир

1. Познакомить учащихся с различными видами излучений, их источниками. 2. Показать разные виды спектров, их практическое использование. 3. Шкала электромагнитный излучений. Зависимость свойств излучений от частоты, длины волны. Цели урока:

Источники света Холодные Горячие электролюминесценция фотолюминесценция катодолюминесценция лампы дневного света газоразрядные трубки огни святого Эльма полярные сияния свечение экранов плазменных телевизоров фосфор краски свечение экранов телевизо ров с ЭЛТ некоторые глубоководные рыбы микроорганизмы Солнце лампа накаливания пламя светлячки трупные газы тепловые х емилюминесценция

Это излучение нагретых тел. Тепловое излучение, согласно Максвеллу, обусловлено колебаниями электрических зарядов в молекулах вещества, из которых состоит тело. Тепловое излучение

Электролюминесценция При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Часть энергии идёт на возбуждение атомов. Возбуждённые атомы отдают энергию в виде световых волн.

Катодолюминесценция Свечение твёрдых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция Излучение, сопровождающее некоторые химические реакции. Источник света остаётся холодным.

Сергей Иванович Вавилов - российский физик. Родился 24 марта 1891 г. в Москве Сергей Вавилов в Институте физики и биофизики начал эксперименты по оптике - поглощению и испусканию света элементарными молекулярными системами. Вавиловым были изучены основные закономерности фотолюминесценции. Вавиловым, его сотрудниками и учениками осуществлено практическое применение люминесценции: люминесцентный анализ, люминесцентная микроскопия, создание экономичных люминесцентных источников света, экранов Фотолюминесценция Некоторые тела сами начинают светиться под действием падающего на них излучения. Светящиеся краски, игрушки, лампы дневного света.

Плотность излучаемой энергии нагретыми телами, согласно теории Максвелла, должна увеличиваться при увеличении частоты (при уменьшении длины волны). Однако опыт показывает, что при больших частотах (малых длинах волн) она уменьшается. Абсолютно чёрным телом называется тело, которое полностью поглощает падающую на него энергию. В природе абсолютно чёрных тел нет. Наибольшую энергию поглощают сажа и чёрный бархат. Распределение энергии в спектре

Приборы, с помощью которых можно получить чёткий спектр, который затем можно исследовать, называются спектральными приборами. К ним относятся спектроскоп, спектрограф.

Виды спектров 2.Полосатые в газообразном молекулярном состоянии, 1. Линейчатые в газообразном атомарном состоянии, Н Н 2 3.Непрерывные или сплошные тела в твёрдом и жидком состоянии, сильно сжатые газы, высокотемпературная плазма

Сплошной спектр излучают нагретые твёрдые тела. Сплошной спектр, согласно Ньютону, состоит из семи участков - красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. Такой спектр даёт также высокотемпературная плазма. Сплошной спектр

Состоит из отдельных линий. Линейчатые спектры излучают одноатомные разрежённые газы. На рисунке показаны спектры железа, натрия и гелия. Линейчатый спектр

Спектр, состоящий из отдельных полос, называется полосатым спектром. Полосатые спектры излучаются молекулами. Полосатые спектры

Спектры поглощения - спектры, получающиеся при прохождении и поглощении света в веществе. Газ поглощает наиболее интенсивно свет именно тех длин волн, которые сам он испускает в сильно нагретом состоянии. Спектры поглощения

Спектральный анализ Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определённый набор длин волн. Метод определения химического состава вещества по его спектру. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.

Видимый свет - это электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,01014-7,51014 Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). Диапазон видимого света- самый узкий во всем спектре. Длина волны в нем меняется менее чем в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Марс в видимом излучении Видимый свет

Электромагнитное излучение, невидимое глазом в диапазоне длин волн от 10 до 380 нм Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами. Ультрафиолетовое излучение

Это невидимое глазом электромагнитное излучение, длины волн которого находятся в диапазоне от 8∙10 –7 до 10 –3 м Фотография головы в инфракрасном излучении Голубые области - более холодные, жёлтые - более тёплые. Области разных цветов отличаются по температуре. Инфракрасное излучение

Вильгельм Конрад Рентген - немецкий физик. Родился 27 марта 1845 г. в городе Леннеп, близ Дюссельдорфа. Рентген был крупнейшим экспериментатором, он провёл множество уникальных для своего времени экспериментов. Наиболее значительным достижением Рентгена было открытие им X-лучей, которые носят теперь его имя. Это открытие Рентгена радикально изменило представления о шкале электромагнитных волн. За фиолетовой границей оптической части спектра и даже за границей ультрафиолетовой области обнаружилась область ещё более коротковолнового электромагнитного излучения, примыкающего далее к гамма-диапазону. Рентгеновские лучи

При прохождении рентгеновского излучения через вещество уменьшается интенсивность излучения за счёт рассеяния и поглощения. Рентгеновские лучи применяются в медицине для диагностики заболеваний и для лечения некоторых заболеваний. Дифракция рентгеновских лучей позволяет исследовать структуру кристаллических твёрдых тел. Рентгеновские лучи используются для контроля структуры изделий, обнаружения дефектов.

Шкала электромагнитных волн включает в себя широкий спектр волн от 10 -13 до 10 4 м. Электромагнитные волны делятся на диапазоны по различным признакам (способу получения, способу регистрации, взаимодействию с веществом) на радио- и микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи. Несмотря на различие, все электромагнитные волны обладают общими свойствами: они поперечны, их скорость в вакууме равна скорости света, они переносят энергию, отражаются и преломляются на границе раздела сред, оказывают давление на тела, наблюдаются их интерференция, дифракция и поляризация. Шкала электромагнитных волн

Диапазоны волн и источники их излучения

Спасибо за внимание! Домашнее задание: 80, 84-86


Понравилась статья? Поделитесь ей